The First Asymmetric Total Syntheses of $(+)$-Lycorine and (+)-1-Deoxylycorine

Arthur G. Schultz,* Mark A. Holoboski, and Mark S. Smyth
Contribution from the Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180-3590
Received February 26, 1996^{*}

Abstract

The first asymmetric total syntheses of (+)-1-deoxylycorine (2a) and (+)-lycorine (2b), the unnatural enantiomer of lycorine (1), are described. Construction of lactam 12, a key intermediate in the synthesis of both $\mathbf{2 a}$ and $\mathbf{2 b}$, began by Birch reduction-alkylation of the chiral benzamide $\mathbf{3}$ with 2-bromoethyl acetate followed by ester saponification to give the 6-(2-hydroxyethyl)-1-methoxy-1,4-cyclohexadiene $\mathbf{6 a}$ in 96% yield as a single diastereomer. This material was converted to the radical cyclization substrates 11a and 11b. Both 11a and 11b gave 12 and the reduced enamide 11c on treatment with AIBN and $\mathrm{Bu}_{3} \mathrm{SnH}$ in refluxing benzene solution. Lactam 12 also was obtained by photocyclization of enamide 11c. The allylic alcohol unit characteristic of the C ring of the lycorine alkaloids was fashioned by a radical induced decarboxylation-epoxide fragmentation of the N-hydroxy-2-thiazoline ester 21b. The resulting (+)-2-epi-deoxylycorine (22) was subjected to Mitsunobu inversion followed by LiAlH_{4} reduction to give (+)-1-deoxylycorine ($\mathbf{2 a}$). The synthesis of $(+)$-lycorine ($\mathbf{2 b}$) involved the conversion of $\mathbf{1 2}$ to allylic alcohol $\mathbf{3 2}$ followed by a Torssell rearrangement of $\mathbf{3 2}$ to give the rearranged allylic acetate $\mathbf{3 5}$. Epoxidation of $\mathbf{3 5}$ with dimethyldioxirane gave 36a, which set the stage for a decarboxylation-epoxide fragmentation of carboxylic acid $\mathbf{3 6 b}$ to give $\mathbf{3 7}$ by photolysis of $\mathbf{3 6 b}$ in the presence of acridine and tert-BuSH. Reduction of $\mathbf{3 7}$ with LiAlH_{4} gave (+)-lycorine (2b).

Lycorine (1) is the most abundant alkaloid in plants of the Amaryllidaceae. It is said that as much as 1% of the dry weight of daffodil bulbs may consist of lycorine. ${ }^{1}$ From the time of its initial isolation in 1877 lycorine was recognized as a potent emetic; ${ }^{2}$ more recent studies have shown that lycorine inhibits protein and DNA synthesis in murine cells and in vivo growth of a murine transplantable ascite tumor. ${ }^{3}$ Lycorine is a powerful inhibitor of growth and cell division in higher plants, algae, and yeast ${ }^{4}$ and has antiviral activity. ${ }^{5}$

Much of the determination of structure for lycorine was accomplished by Kondo and co-workers ${ }^{2,6}$ by utilization of classical chemical studies; proof of structure was provided by X-ray crystallographic analysis of dihydrolycorine hydrobromide. ${ }^{7}$ Although several syntheses of racemic lycorine alkaloids have been developed, ${ }^{8}$ an asymmetric synthesis had not been

[^0]reported until we communicated the first asymmetric synthesis of (+)-1-deoxylycorine (2a). ${ }^{9}$ Herein we report the details of the synthesis of $\mathbf{2 a}$ along with the first asymmetric synthesis of $(+)$-lycorine (2b), the unnatural enantiomer of $\mathbf{1}$.

Results and Discussion

The lycorine ring system 2 was assembled by utilization of three structural components as shown below. Stereoselective development of the C ring centered on the reductive alkylation of chiral benzamide 3^{10} with the two-carbon alkylation reagent 4 to give a 1,4-cyclohexadiene. It was expected that the $\mathrm{C}(1)$ hydroxy group of $\mathbf{2}$ would be introduced by bis-allylic oxidation of the intermediate 1,4 -cyclohexadiene; ${ }^{11}$ however, this oxidation was ineffective, and an alternative process had to be developed. Introduction of the hydroxy group at $\mathrm{C}(2)$ was accomplished by a halolactonization (see 10a).

The methoxy group on $\mathbf{3}$ and the acetoxy group on $\mathbf{4}$ provided the means to introduce the nitrogen atom in $\mathbf{2}$, while the bromine atom on the aroyl component 5 enabled the $\mathrm{C}(14)-\mathrm{C}(15)$ bond to be fashioned by a completely stereoselective aryl radical
(9) Schultz, A. G.; Holoboski, M. A.; Smyth, M. S. J. Am. Chem. Soc. 1993, 115, 7904.

Scheme 1^{a}

${ }^{a}$ Reaction conditions: (a) $\mathrm{K}, \mathrm{NH}_{3}$, tert -BuOH (1 equiv) $-78^{\circ} \mathrm{C}$; $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{OAc}$ (2 equiv) -78 to $25^{\circ} \mathrm{C} ; \mathrm{KOH}, \mathrm{MeOH}$; (b) DEAD, $\mathrm{PPh}_{3},(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{N}_{3}, \mathrm{THF}$; (c) $\mathrm{HCl}, \mathrm{MeOH}$; (d) $\mathrm{I}_{2}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}$; (e) PPh_{3}, THF, reflux; (f) ArCOCl (1 equiv) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (g) BnOH , THF, n-BuLi, -78 to $25^{\circ} \mathrm{C}$.
addition reaction (see 10a). With the ring system completely assembled, a decarboxylative elimination reaction unveiled the ring C allylic alcohol unit characteristic of the lycorine alkaloids.

Construction of the Lycorine Ring System. The preparation of 12, a key intermediate in the asymmetric syntheses of both $(+)$-1-deoxylycorine (2a) and (+)-lycorine ($\mathbf{2 b}$), is shown in Scheme 1. Birch reduction-alkylation of $\mathbf{3}^{12}$ with 2-bromoethyl acetate followed by ester saponification gave the 6-(2-hydroxyethyl)-1-methoxy-1,4-cyclohexadiene $\mathbf{6 a}$ in 96% yield as a single diastereomer. Diastereomeric purity of the product of reductive alkylation of $\mathbf{3}$ was determined by direct ${ }^{1} \mathrm{H}$ NMR comparison to a $1: 1$ diastereomeric mixture prepared by reductive alkylation of o-anisic acid with 2-bromoethyl acetate and coupling of the resulting cyclohexadienecarboxylic acid to L-prolinol (methyl ether). ${ }^{13}$ In comparison, alkylations of the enolate derived from 3 with methyl iodide and ethyl iodide have provided diastereoselectivities of $260: 1$ as determined by quantitative gas chromatographic analysis. ${ }^{12 \mathrm{a}}$

Alcohol 6a was converted to azide $\mathbf{6 b}$, which was subjected to enol ether hydrolysis to give 7. Iodolactonization of 7 provided 8, and treatment of $\mathbf{8}$ with triphenylphosphine gave the enantiomerically pure imine 9 in $\sim 50 \%$ overall yield from 6a. The racemate of $\mathbf{9}$ was prepared (see supporting information), and a chiral HPLC analysis was developed to give near base line resolution of the enantiomers. Examination of 9 prepared from $\mathbf{3}$ demonstrated that $\mathbf{9}$ had been prepared with $\geq 99 \%$ ee.

Acylation of imine 9 with 2-bromo- and 2-iodopiperonyloyl chloride gave enamides 10a and 10b. Treatment of 10a and

[^1]
13a

13b

Figure 1. Qualitative transition state structures 13a and 13b for the radical cyclization of $\mathbf{1 2}$ showing a more favorable orbital overlap in 13a and a steric interaction resulting from passage of $\mathrm{C}(14)$ near the $\mathrm{C}(15)-\mathrm{H}$ bond during α-facial attack in $\mathbf{1 3 b}$.

10b with the lithium salt of benzyl alcohol afforded radical cyclization substrates 11a and 11b. Both 11a and 11b underwent cyclization on treatment with AIBN and $\mathrm{Bu}_{3} \mathrm{SnH}$ in refluxing benzene solution to give the highly crystalline lactam 12 (53% and 51% yields); a single-crystal X-ray structure determination provided the molecular structure of $\mathbf{1 2} .{ }^{9}$

The only other material isolated from the radical cyclizations of 11a and 11b was the reduced enamide 11c (45\%). Enamide 11c might be formed by direct reduction of the radical derived from 11a and 11b with $\mathrm{Bu}_{3} \mathrm{SnH}$ or by way of an intramolecular α-amidoyl to aryl 1,5-hydrogen atom transfer followed by reduction. ${ }^{14}$

Precedence for formation of a trans BC ring junction in a radical cyclization of an achiral substrate related to $\mathbf{1 1}$ is available in the work of Rigby and co-workers. ${ }^{15}$ Thus, the most remarkable feature of the conversions of 11a and 11b to 12 is the outstanding facial selectivity exhibited by the intermediate aryl radical. Qualitative transition state structures 13a and 13b for aryl radical addition to the β - and α-face of the $\mathrm{C}(15)-\mathrm{C}(16)$ double bond are shown in Figure 1. These models were obtained by minimization of a simplified precursor of the intermediate aryl radical, wherein the benzyl ester was replaced by a methyl group. From inspection of these models, it is clear that the observed β-facial addition is a result of more favorable orbital overlap as shown in 13a as well as an obvious steric interaction that would result from passage of $C(14)$ near the $\mathrm{C}(15)-\mathrm{H}$ bond during α-facial attack as shown in 13b.

Reduction of the intermediate tertiary radical $\mathbf{1 4}$ at $\mathrm{C}(16)$ by $\mathrm{Bu}_{3} \mathrm{SnH}$ also occurs from the β-face despite the presence of the relatively bulky (benzyloxy) carbonyl group at $\mathrm{C}(12)$. This

[^2]stereoselectivity reflects the greater stability of the product $\mathbf{1 2}$, which has a trans BC ring fusion and a cis CD ring fusion compared to the epimer $\mathbf{1 5}$ which has cis BC and trans CD ring fusions; molecular modeling ${ }^{16}$ demonstrated that $\mathbf{1 5}$ is ~ 11 $\mathrm{kcal} / \mathrm{mol}$ less stable than 12. Radical transfer reactions are generally considered to occur by way of early transition states. Thus, it is believed that radical $\mathbf{1 4}$ has geometry at $\mathrm{C}(16)$ analogous to $\mathbf{1 2}$ and that inversion to a radical resembling $\mathbf{1 5}$ is virtually impossible because of ring strain. On the basis of this analysis, it is noteworthy that aryl radical addition to the α-face of the enamide double bond followed by reduction of the tertiary radical corresponding to 14 would have generated 17 with cis BC and CD ring fusions (overall trans radical addition) rather than the less stable epimer $\mathbf{1 6}$ required for a lycorine synthesis. ${ }^{17}$

14

16, ~ 6 kcal less stable than 17

17

We have examined the photochemistry of enamide 11c. ${ }^{18}$ Related enamides undergo photocyclization to six-membered nitrogen heterocycles ${ }^{19}$ by conrotatory cyclization of the enamide to an intermediate zwitterion which undergoes a suprafacial 1,5hydrogen atom migration. ${ }^{20}$ As shown for enamide 11c, a conrotatory photocyclization would generate zwitterion 18, from which suprafacial 1,5-hydrogen migration would give 12. Alternative facial selectivity for the conrotatory photocyclization was expected to provide the diastereomeric trans-dihydro $\mathbf{1 6}$ via zwitterion 19.

Irradiation of $11 \mathbf{c}$ in deoxygenated benzene solution (0.02 M) through Pyrex glass gave a mixture of 12, 20, and 17 (1.1: 2.7:1.0) in 80% yield (Scheme 2). Characteristic doublets in
(17) For a more complete discussion of the facial, regio- and stereoselectivity of radical cyclizations of chiral enamides, see: Schultz, A. G.; Guzzo, P. R.; Nowak, D. M. J. Org. Chem. 1995, 60, 8040.
(18) Enamide 11c also was prepared via acylation of 9 with piperonyloyl chloride to give 10c.
(19) (a) Lenz, G. R. Synthesis 1978, 489. (b) Ninomiya, I.; Naito, T. In The Alkaloids; Brossi, A., Ed.; Academic Press: New York, 1983; Vol. 22, p 189.
(20) For an approach to the lycorine alkaloids involving photocyclizations of enamides to dehydrogenated photoproducts, see: Iida, H.; Aoyagi, S.; Kibayashi, C. J. Chem. Soc., Perkin Trans. 1 1975, 2502.

Scheme 2

Scheme 3^{a}

${ }^{a}$ Reaction conditions: (a) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOH}$ (1 atm); (b) DCC, 4-pyrrolidinopyridine, $\mathrm{HONC}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) AIBN, $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{PhH}$, reflux; (d) DEAD, $\mathrm{PPh}_{3}, \mathrm{AcOH}, \mathrm{THF}$; (e) $\mathrm{DEAD}, \mathrm{PPh}_{3}, \mathrm{PhCO}_{2} \mathrm{H}, \mathrm{THF}$; (f) $\mathrm{LiAlH}_{4}, \mathrm{THF}$, reflux.
the ${ }^{1} \mathrm{H}$ NMR spectra of crude photoreaction mixtures indicated that regioisomeric photoproducts also had formed. In an attempt to eliminate the formation of the dehydrogenated photoproduct 20, irradiation of 11c was carried out in the presence of 5.5 equiv of thiophenol. Inhibition of the oxidative pathway leading to $\mathbf{2 0}$ occurred and a $2: 1$ mixture of $\mathbf{1 2}$ and $\mathbf{1 7}$ was obtained in 60% yield. Control experiments demonstrated that $\mathbf{2 0}$ did not convert to $\mathbf{1 2}$ or $\mathbf{1 7}$ on irradiation in the presence of thiophenol.

Thus, the byproduct from radical cyclizations of 11a and 11b also can be converted to $\mathbf{1 2}$, although the facial selectivity for the photocyclization of enamide $\mathbf{1 1 c}$ is poor. The unexpected formation of cis-dihydro $\mathbf{1 7}$ rather than $\mathbf{1 6}$ may be a result of the relative instability calculated for $\mathbf{1 6}$ compared to $17(\sim 6$ $\mathrm{kcal} / \mathrm{mol})$. Perhaps another mechanism for hydrogen atom transfer in zwitterion $\mathbf{1 9}$ competes with the expected suprafacial 1,5 -hydrogen migration to give the more stable product. ${ }^{21}$ It is noteworthy that thiophenol was found to be an effective additive to avert the formation of $\mathbf{2 0}$.

The Synthesis of (+)-1-Deoxylycorine (2a). The radical cyclization $\mathbf{1 1} \boldsymbol{\rightarrow} \mathbf{1 2}$ effectively transfers the stereogenicity developed at pro-C(12) during reductive alkylation of the chiral benzamide $\mathbf{3}$ to $\mathrm{C}(15)$ of $\mathbf{1 2}$. With this transfer accomplished, the synthesis of (+)-1-deoxylycorine (2a) was completed as shown in Scheme 3.

Successful debenzylation of the benzyl ester in $\mathbf{1 2}$ depended on the source of palladium catalyst. Utilization of JohnsonMatthey $10 \% \mathrm{Pd} / \mathrm{C}$ (steam reduced) gave carboxylic acid 21a in 84% yield. Attempts to decarboxylate 21a directly by photolysis in the presence of acridine and tert-BuSH in benzene solution ${ }^{22}$ resulted in decomposition. It is unclear why this method for decarboxylation is ineffective, especially in light of

[^3]
Scheme 4

a related successful conversion (vide infra). In any event, conversion of 21a to either the N-hydroxy-2-thiopyridone ester ${ }^{23 \mathrm{a}}$ (not shown) or the N -hydroxy-2-thiazoline thione ester $\mathbf{2 1 b}^{23 \mathrm{~b}}$ with DCC^{24} and treatment of either ester with AIBN and $\mathrm{Bu}_{3} \mathrm{SuH}$ in refluxing benzene solution provided the crystalline (+)-2-epi-1-deoxylycorine (22). ${ }^{25,26}$

Inversion of the allylic alcohol of $\mathbf{2 2}$ under classic Mitsunobu conditions with glacial acetic acid gave a 50% yield (44% recovered starting material) of acetate 23a which was identical (TLC, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, CIMS) to authentic racemic material prepared from (\pm)-1-deoxylycorine-7-one ${ }^{27}$ provided by Professor Kurt Torssell. A higher yield of ester 23b (73\%) was obtained when benzoic acid was used in the Mitsunobu inversion. Reduction of either 23a or 23b with LiAlH_{4} provided (+)-1-deoxylycorine (2a) in good yield, identical to racemic material prepared from (\pm)-1-deoxylycorine-7-one (TLC, ${ }^{1} \mathrm{H}$ NMR).

Although the relative configuration of 2a was known for certain, the absolute configuration was not. Reduction of 2-epi-1-deoxylycorin-7-one (22) with LiAlH_{4} gave 24 in 77% yield (Scheme 4). Oxidation of $\mathbf{2 4}$ with $\mathrm{MnO}_{2}{ }^{28}$ provided 1-deoxy-lycorin-2-one (25) which exhibited an optical rotation ($[\alpha]^{24} \mathrm{D}$ $+164^{\circ}$ with $\left.\mathrm{mp} 157-8^{\circ} \mathrm{C}\right)$ opposite to that of $\mathbf{2 5}\left([\alpha]^{24} \mathrm{D}-169^{\circ}\right.$ with $\mathrm{mp} 157-8{ }^{\circ} \mathrm{C}$) prepared from natural lycorine (1) by Kotera. ${ }^{29}$ These data confirm that 2a has absolute configuration opposite to that of the natural lycorine alkaloids. In addition, the stereochemical sense of alkylation of the enolate derived from 3 with 2-bromoethyl acetate is confirmed to be the same as that observed under identical reaction conditions for less highly functionalized alkylation reagents. ${ }^{12}$

It is of interest to note that 1-deoxylycorin-2-one (25) provides 2-epi-1-deoxylycorine (24) with only a trace of $\mathbf{2}$ upon reduction

[^4]with sodium borohydride in ethanol (Scheme 4). This is significant considering that independent syntheses of racemic 25 have been reported by Muxfeldt ${ }^{30}$ and Seebach ${ }^{31}$ and that the assignment of structure for the reduction product had not been previously determined. ${ }^{32}$

One additional observation deserves comment. It was thought that carboxylic acid 21a might undergo a decarboxylative fragmentation to allylic alcohol 22 via the hypothetical zwitterionic intermediate 26. Instead, 21a rearranged to the lactone alcohol $\mathbf{2 8}$ in 80% yield on heating a solution of 21a in water to reflux. This rearrangement may occur by way of trans diaxial hydrolysis of the epoxide ring in $\mathbf{2 6}$ to give diol 27 initially in a chair conformation followed by relaxation to a boat conformation and lactonization involving displacement of the $\mathrm{C}(2)$ alcohol group.

The Synthesis of (+)-Lycorine (2b). The remaining challenge to development of the first asymmetric synthesis of $\mathbf{2 b}$ was the incorporation of the $\mathrm{C}(1)$ hydroxy substituent. This substitution proved to be somewhat more difficult than initially expected.

Introduction of $\mathrm{C}(1)$ oxygenation prior to radical or photochemical formation of the $\mathrm{C}(14)-\mathrm{C}(15)$ bond could not be accomplished. ${ }^{33}$ As a first alternative, the hydroxylation of an enolate derived from (+)-1-deoxylycorin-2-one (25) was examined. Unfortunately, treatment of $\mathbf{2 5}$ with either tertbutyldimethylsilyl triflate at $0{ }^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{34}$ or sodium hexamethyldisilylamide followed by tert-butyldimethylsilyl chloride gave dienol silyl ether 29 rather than the desired $\mathrm{C}(1)$ analogue. ${ }^{35}$

An effective solution to the $\mathrm{C}(1)$-oxidation problem is shown in Schemes 5 and 6. The conversion of epoxide 12 to selenide 30 was carried out by utilization of standard Sharpless conditions at room temperature. ${ }^{36}$ Prolonged reaction or elevated temperatures resulted in transesterification by the solvent (ethanol). Oxidation with hydrogen peroxide produced epoxide $\mathbf{3 1}$ rather

[^5]
Scheme $\mathbf{5}^{a}$

${ }^{a}$ Reaction conditions: (a) NaBH_{4}, $\mathrm{EtOH}, \mathrm{PhSeSePh}$; (b) $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, THF; (c) $\mathrm{NaIO}_{4}, \mathrm{H}_{2} \mathrm{O}$, THF; (d) TFAA, UHP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (e) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP.

Scheme $\mathbf{6}^{a}$

${ }^{a}$ Reaction conditions: (a) $\mathrm{AcOH}, \mathrm{Ac}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}, 50{ }^{\circ} \mathrm{C}$; (b) dimethyldioxirane, acetone, $0^{\circ} \mathrm{C}$; (c) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (1 atm) EtOH ; (d) h ν, Pyrex, acridine, PhH , tert-BuSH; (e) LiAlH_{4}, THF, reflux; (f) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP.
than the desired allylic alcohol 32. ${ }^{37}$ Oxidation of selenide $\mathbf{3 0}$ with sodium periodate gave allylic alcohol $\mathbf{3 2}$ in 81% overall yield from 12.

Epoxidation of allylic alcohol $\mathbf{3 2}^{38}$ with trifluoroperacetic acid ${ }^{39}$ generated from the reaction of trifluoroacetic anhydride and urea hydrogen peroxide complex ${ }^{40}$ gave a $1: 1$ mixture of $\mathbf{3 1}$ and 33. Epoxidation of $\mathbf{3 2}$ with m-chloroperbenzoic acid or $\mathrm{VO}(\mathrm{acac})_{2} /$ tert- BuOOH provided even less of the desired epoxide 33. Molecular models of $\mathbf{3 2}$ show that the pseudoequatorial $\mathrm{C}(3)$ hydroxyl group on the boat cyclohexene C ring is poorly oriented for stereodirected peracid and $\mathrm{VO}(\mathrm{acac})_{2} /$ tertBuOOH epoxidations. ${ }^{41}$

Although the conversion of epoxide $\mathbf{3 3}$ to (+)-lycorine (2b) might be possible, the absence of stereocontrol for its formation

[^6]represented an unfortunate turn of events in an otherwise completely stereoselective synthesis. For this reason, a study of an allylic substitution ${ }^{42}$ of alcohol $\mathbf{3 2}$ or acetate $\mathbf{3 4}$ gained considerable appeal. Esterification of $\mathbf{3 2}$ with acetic anhydride, triethylamine, and 4-dimethylaminopyridine gave the allylic acetate $\mathbf{3 4}$ in 92% yield.

Effective reaction conditions for the rearrangement of $\mathbf{3 4}$ to 35 (Scheme 6) could not be found; however, treatment of allylic alcohol 32 with a mixture of acetic acid, acetic anhydride, and sulfuric acid at $50^{\circ} \mathrm{C}$, conditions first described by Torssell and co-workers ${ }^{27}$ for rearrangement of a closely related analogue of 32, provided a mixture consisting of the desired allylic acetate $\mathbf{3 5}$, the unrearranged allylic acetate 34, and a minor amount of a substance tentatively identified as the $\mathrm{C}(1)$ diastereomeric allylic acetate corresponding to $\mathbf{3 5}$. Chromatography on silica gel provided crystalline 35 in 34% yield. The overall yield of 35 could be considerably improved by recycling operations that involved hydrolysis of the recovered mixture of isomeric allylic acetates followed by re-exposures to the Torssell reaction conditions.

Allylic acetate $\mathbf{3 5}$ was converted to epoxide 36a on treatment with dimethyldioxirane. ${ }^{43}$ It is noteworthy that m-chloroperbenzoic acid did not react with $\mathbf{3 5}$ and that $\mathrm{CF}_{3} \mathrm{CO}_{3} \mathrm{H}$ gave only a trace of 36a after an extended reaction period. The stereoselectivity of epoxidation was determined by observation of a coupling constant of 2.7 Hz for $\mathrm{H}(1)$ and $\mathrm{H}(2)$. A coupling of $\sim 6 \mathrm{~Hz}$ would have been expected had the epoxidation of 35 occurred syn to the benzyl ester group; cf., epoxide 12.

Debenzylation of ester 36a occurred uneventfully to give carboxylic acid $\mathbf{3 6 b}$. While preparation of the desired ester for radical fragmentation proved to be problematic, Okada's direct procedure for photochemical decarboxylation cleanly afforded allylic alcohol $37 .{ }^{22}$ Acetylation of $\mathbf{3 7}$ gave diacetate $\mathbf{3 8}$ (mp $114{ }^{\circ} \mathrm{C}$) for which the IR, ${ }^{1} \mathrm{H}$ NMR, and mass spectra agreed with data published for the racemate. ${ }^{44}$ Reduction of 37 with LiAlH_{4} gave $(+)$-lycorine (2b) which was identical to a sample of natural (-)-lycorine provided by Professor George Pettit (TLC, ${ }^{1} \mathrm{H}$ NMR). Because of general insolubility of lycorine in organic solvents, $\mathbf{2 b}$ was converted to its diacetate [mp 207-9 ${ }^{\circ} \mathrm{C}$ dec, $\left.[\alpha]^{23}{ }_{\mathrm{D}}-25^{\circ}\left(c 0.16, \mathrm{CHCl}_{3}\right)\right]$ which was identical (TLC, ${ }^{1} \mathrm{H}$ NMR, CIMS, IR, HPLC) to the diacetate (mp 207-13 ${ }^{\circ} \mathrm{C}$) ${ }^{44 \mathrm{a}}$ prepared from natural (-)-lycorine (1) $\left[[\alpha]^{23} \mathrm{D}+25.6^{\circ}\right.$ (c 0.39, CHCl_{3})].

Conclusion

The first asymmetric total syntheses of (+)-1-deoxylycorine (2a) and $(+)$-lycorine ($\mathbf{2 b}$) have been achieved. The synthesis of 2a required 13 steps from the readily available chiral benzamide $\mathbf{3},{ }^{12 \mathrm{~b}}$ while (+)-lycorine ($\mathbf{2 b}$) was obtained in 15 steps. Both $\mathbf{2 a}$ and $\mathbf{2 b}$ were prepared in enantiomerically pure form via Birch reduction-alkylation of $\mathbf{3}$. The iodolactonization $7 \rightarrow \mathbf{8}$ accomplished the dual functions of introduction of the hydroxy group at $C(2)$ with complete stereocontrol and release of the chiral auxiliary.

A key step in the synthesis of both $\mathbf{2 a}$ and $\mathbf{2 b}$ is the completely regio- and stereoselective radical cyclization reaction to give 12. Companion studies ${ }^{17}$ suggest that this type of chiral

[^7]enamide cyclization will have substantial application to the stereocontrolled synthesis of other alkaloids.

While our earlier applications of the Birch reductionalkylation to asymmetric synthesis focused on target structures with a quaternary stereocenter derived from $\mathrm{C}(1)$ of the starting benzoic acid derivative, ${ }^{10 \mathrm{~b}}$ the syntheses of $\mathbf{2 a}$ and $\mathbf{2 b}$ rather convincingly demonstrate that the methodology is applicable to the synthesis of chiral six-membered rings containing only tertiary and trigonal carbon atoms. The development of synthetic strategies that illustrate a more versatile Birch reduc-tion-alkylation will continue to be the subject of future publications from this laboratory.

Experimental Section

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on either a Varian XL-200 $(200 \mathrm{MHz})$ or Unity $500(500 \mathrm{MHz})$ spectrometer employing tetramethylsilane as an internal standard. Infrared spectra were recorded on a Perkin-Elmer 298 Model spectrometer. Mass spectral data were obtained on a Hewlett-Packard Model 5987-A GC-MS system employing methane or isobutane as chemical ionization gases or utilizing direct electron impact. Optical rotations were taken on a Perkin-Elmer Model 241 polarimeter with a $0.5 \mathrm{~mL}(L=0.1 \mathrm{dm})$ cell. Elemental analyses were performed by either Spang Microanalytical Laboratories, Eagle Harbor, MI or Quantitative Technologies Inc., Whitehouse, NJ. Melting points were determined in open capillary tubes on a Thomas Hoover apparatus and were uncorrected. Column chromatography was performed on Baker $40 \mu \mathrm{~m}$ silica gel. Radial chromatography was performed with EM Science silica gel $60\left(\mathrm{PF}_{254}\right)$ containing Gypsum. All reactions were performed under an inert atmosphere of nitrogen unless otherwise noted. HPLC analyses were performed on a Waters Associates Model 6000A instrument equipped with a Model R401 differential refractometer and a Hewlett Packard Model HP3394 integrator using a 25 cm Daicel OD or a 25 cm Partisil 5 column. The 300 nm light source was a medium pressure 450W Hanovia mercury arc lamp.

6-Bromopiperonylic acid was prepared ${ }^{45}$ and recrystallized from water. 6-Iodopiperonal was prepared according to a literature procedure ${ }^{46}$ and oxidized to 6 -iodopiperonlyic acid. ${ }^{47}$ The corresponding acid chlorides were prepared with thionyl chloride.
(2'S,6R)-1-Methoxy-6-(2-hydroxyethyl)-6-[[2'-(methoxymethyl)-pyrrolidinyl]carbonyl]-1,4-cyclohexadiene (6a). A solution of $\mathbf{3}^{12}$ $(7.08 \mathrm{~g}, 0.0284 \mathrm{~mol})$ in THF $(40 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ and ammonia (400 mL) and tert-butyl alcohol ($2.11 \mathrm{~g}, 0.0284 \mathrm{~mol}$) were added. Potassium was added in small pieces until a blue color persisted for 15 min . 2-Bromoethyl acetate ($12.0 \mathrm{~g}, 0.071 \mathrm{~mol}$) was added, and the yellow solution was stirred 0.5 h . After evaporation of the ammonia, methanol (42 mL) and 10% potassium hydroxide (14 mL) were added, and the resulting solution stirred 6 h at room temperature. The mixture was concentrated, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$ were added, the layers separated, and the aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed in vacuo to afford a yellow oil. Chromatography over silica gel ($1: 1$ hexanes/ethyl acetate; then ethyl acetate) provided pure $\mathbf{6 a}(8.05 \mathrm{~g}, 96 \%)$ as a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.91$ (dt, $1 \mathrm{H}, J=9.8,3.7,1.2 \mathrm{~Hz}$), 5.61 (d, $1 \mathrm{H}, J=9.88 \mathrm{~Hz}), 4.72(\mathrm{t}, 1 \mathrm{H}, J=3.50 \mathrm{~Hz}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 3.70-$ $3.56(\mathrm{~m}, 4 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.20(\mathrm{~m}, 3 \mathrm{H}), 2.99-$ $2.75(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.70(\mathrm{~m}, 4 \mathrm{H})$; IR $\left(\mathrm{CHCl}_{3}\right) 3360,3000,1610 \mathrm{~cm}^{-1}$; CIMS, m / z (rel intensity) $296\left(\mathrm{M}^{+}+\right.$ 1, 100). An acceptable elemental analysis could not be obtained.
(2'S,6R)-1-Methoxy-6-(2-azidoethyl)-6-[[2'-(methoxymethyl)pyr-rolidinyl]carbonyl]-1,4-cyclohexadiene ($\mathbf{6 b}$). To a solution of $\mathbf{6 a}$ (7.72 $\mathrm{g}, 0.0261 \mathrm{~mol})$ in THF $(130 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added triphenylphosphine ($6.86 \mathrm{~g}, 1$ equiv) and diethyl azodicarboxylate ($4.55 \mathrm{~g}, 0.0261 \mathrm{~mol}$), and stirring was continued for 20 min . Then a solution of diphen-

[^8]ylphosphoryl azide ($7.18 \mathrm{~g}, 0.0261 \mathrm{~mol}$) in THF (33 mL) was added slowly, and the mixture was allowed to warm to room temperature overnight. Evaporation of the solvent provided a dark brown oil (27.75 g) which was flash chromatographed (hexanes/ethyl acetate 2:1) to afford $\mathbf{6 b}(6.15 \mathrm{~g}, 73 \%)$ as a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.93$ $(\mathrm{m}, 1 \mathrm{H}), 5.41(\mathrm{dt}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}), 4.80(\mathrm{t}, 1 \mathrm{H}, J=3.20$ $\mathrm{Hz}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.32(\mathrm{~m}$, $1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.27-3.09(\mathrm{~m}, 3 \mathrm{H}), 2.95-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~m}$, $1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.70(\mathrm{~m}, 4 \mathrm{H})$; IR $\left(\mathrm{CHCl}_{3}\right) 2940,2110$, $1610 \mathrm{~cm}^{-1} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 169.15,152.14,126.51,125.74,92.91$, $71.72,58.71,58.08,54.02,50.48,47.66,45.77,34.88,26.49,26.12$, 24.73; CIMS, m / z (rel intensity) 321 ($\mathrm{M}^{+}+1,100$). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 59.98; H, 7.55. Found: C, 59.71; H, 7.41.
($\mathbf{2}^{\prime}$ S,2R)-2-(2-Azidoethyl)-2-[[2'-(methoxymethyl)pyrrolidinyl]car-bonyl]-3-cyclohexen-1-one (7). To $6 \mathbf{b}$ ($6.15 \mathrm{~g}, 0.0191 \mathrm{~mol}$) in MeOH (192 mL) was added $6 \mathrm{M} \mathrm{HCl}(71 \mathrm{~mL})$, and the clear yellow solution was stirred at room temperature overnight. After removing the MeOH under reduced pressure, water was added (30 mL), and the mixture was extracted with methylene chloride $(5 \times 50 \mathrm{~mL})$. The combined organic layers were washed with NaHCO_{3} (saturated), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash chromatography (hexanes/ethyl acetate, 1:1) afforded $7(5.57 \mathrm{~g}, 95 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $6.04(\mathrm{dt}, 1 \mathrm{H}, J=9.8 \mathrm{~Hz}, 4.2 \mathrm{~Hz}), 5.67(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 4.27(\mathrm{~m}$, $1 \mathrm{H}), 3.62(\mathrm{dd}, J=9.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.30(\mathrm{~m}, 3$ H), 3.36 (s, 3 H), 3.10-3.05 (m, 1 H), 2.66-2.60 (m, 3 H), 2.54 (m, $1 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 3$ $\mathrm{H})$; IR $\left(\mathrm{CHCl}_{3}\right) 2950,2110,1710,1625 \mathrm{~cm}^{-1} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ 207.12, 167.59, 128.43, 128.29, 71.55, 59.87, 58.83, 57.84, 47.68, 46.53, $36.15,35.48,26.48,25.57,24.34$. CIMS, m / z (rel intensity) $307\left(\mathrm{M}^{+}\right.$ $+1,100)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}: \mathrm{C}, 58.81 ; \mathrm{H}, 7.24$. Found: C, 58.83 ; H, 7.25 .
($2 R, 3 R, 4 R$)-1-Oxo-2-(2-azidoethyl)-3-iodocyclohexane-2,4-carbolactone (8). To a solution of amide $7(2.22 \mathrm{~g}, 7.25 \mathrm{mmol})$ and THF $(45 \mathrm{~mL})$ were added $\mathrm{H}_{2} \mathrm{O}(45 \mathrm{~mL})$ and iodine $(11 \mathrm{~g}, 43 \mathrm{mmol})$. The reaction was stirred 12 h and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (sat) was added until the black reaction turned yellow. The THF was evaporated and the aqueous phase was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 20 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Flash chromatography (EtOAc/ hexanes; 1:2) afforded lactone $\mathbf{8}$ as a colorless solid ($2.0 \mathrm{~g}, 82 \%$). Mp $69-72^{\circ} \mathrm{C} ;[\alpha]^{18} \mathrm{D}-161.5^{\circ}\left(c 6.76, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.05$ (m, 1 H), $2.25(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.77(\mathrm{~m}, 3 \mathrm{H}), 3.41(\mathrm{~m}$, $2 \mathrm{H}), 4.96(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ 197.13, 169.27, 77.46, 62.46, 46.28, 32.73, 27.26, 23.87, 23.82. IR $\left(\mathrm{CDCl}_{3}\right) 2120,1780,1725 \mathrm{~cm}^{-1}$. CIMS m / z (rel intensity) $336\left(\mathrm{M}^{+}+\right.$ 1, 100), 308 (50). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{I}: \mathrm{C}, 32.26 ; \mathrm{H}, 3.01$; N, 12.54. Found: C, 32.63; H, 2.95; N, 12.49.
(3aR,4R,5R)-4-Iodo-2,3,6,7-tetrahydroindole-3a,5-carbolactone (9). To a solution of lactone $\mathbf{8}(6.35 \mathrm{~g}, 19.0 \mathrm{mmol})$ in THF (250 mL) was added triphenylphosphine $(5.0 \mathrm{~g}, 19 \mathrm{mmol})$, and the reaction was refluxed $(9 \mathrm{~h})$, cooled, and concentrated. Flash chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane; 1:1) afforded imine $9(4.97 \mathrm{~g}, 90 \%)$ as a colorless solid. Mp $130{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}-170.6^{\circ}\left(c 2.18, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.91$ $(\mathrm{m}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 4 \mathrm{H}), 2.83(\mathrm{dd}, J=16.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 2$ $\mathrm{H}), 4.70(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 170.33$, $167.00,77.93,65.20,60.23,28.67,25.42,24.66,22.63$; IR $\left(\mathrm{CHCl}_{3}\right)$ 2940, 1785, $1665 \mathrm{~cm}^{-1}$; CIMS m/z (rel intensity) $292\left(\mathrm{M}^{+}+1,100\right)$, 166 (66). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{I}: \mathrm{C}, 37.14 ; \mathrm{H}, 3.46$. Found: C, 37.20; H, 3.46.
(3aR,4R,5R)-N-(6-Bromopiperonyloyl)-5,6-dihydro-4H-indoline-3a,5-carbolactone (10a). A solution of imine $9(0.526 \mathrm{~g}, 1.81 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.37 \mathrm{~g}, 3.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$, and then a solution of 6-bromopiperonyloyl chloride $(0.477 \mathrm{~g}, 1.81$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added slowly. The reaction was allowed to gradually warm to room temperature while stirring (12 h). The mixture was washed with $10 \% \mathrm{HCl}(20 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(30$ $\mathrm{mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$; solvent evaporation and flash chromatography (EtOAc/hexane; 1:4) provided enamide 10a ($0.915 \mathrm{~g}, 98 \%$) as a colorless solid. Mp $131{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}-4.3^{\circ}\left(c 0.46, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.10(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=19 \mathrm{~Hz}, 1 \mathrm{H}), 2.97$ $(\mathrm{d}, J=19 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~m}$, $1 \mathrm{H}), 6.03(\mathrm{~s}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H})$. IR $\left(\mathrm{CDCl}_{3}\right) 1780,1640 \mathrm{~cm}^{-1}$; CIMS m/z (rel intensity) $520\left(\mathrm{M}^{+}+1,21\right)$,
$518\left(\mathrm{M}^{+}+1,22\right), 248$ (100). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{BrI}$: C , 39.41 ; H, 2.53; N, 2.70. Found: C, 39.26; H, 2.70; N, 2.55.
(3aR,4R,5R)- \boldsymbol{N}-(6-Iodopiperonyloyl)-5,6-dihydro- $\mathbf{4 H}$-indoline-3a,5-carbolactone (10b). A solution of imine 9 ($1.76 \mathrm{~g}, 6.06 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(1.23 \mathrm{~g}, 12.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was cooled to 0 ${ }^{\circ} \mathrm{C}$, and then a solution of 6-iodopiperonyloyl chloride ($1.88 \mathrm{~g}, 6.06$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added slowly. The reaction was allowed to gradually warm to room temperature while stirring (12 h). The mixture was washed with $10 \% \mathrm{HCl}(70 \mathrm{~mL})$ and saturated NaHCO_{3} $(100 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$; solvent evaporation and flash chromatography (EtOAc/hexane; 1:4) provided enamide $\mathbf{1 0 b}(3.4 \mathrm{~g}, 99 \%)$ as a colorless solid, mp $200-202{ }^{\circ} \mathrm{C} ;[\alpha]^{24}{ }_{\mathrm{D}}-0.3^{\circ}\left(c 3.26, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.10(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=19 \mathrm{~Hz}, 1$ H), $2.96(\mathrm{~d}, J=19 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.82(\mathrm{~m}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H})$. IR $\left(\mathrm{CDCl}_{3}\right) 1780,1640 \mathrm{~cm}^{-1}$; CIMS m / z (rel intensity) $566\left(\mathrm{M}^{+}+1\right.$, 14), 440 (37), 394 (94), 314 (98), 312 (80).
(3aS,4S,5R)-N-(6-Bromopiperonyloyl)-4,5-epoxy-5,6-dihydro-4H-3a-(benzyloxycarbonyl)indoline (11a). A solution of $\mathrm{BnOH}(1.03 \mathrm{~g}$, $9.61 \mathrm{mmol})$ in THF (60 mL) was cooled to $-78^{\circ} \mathrm{C}$ and a 2.5 M solution of BuLi ($2.60 \mathrm{~mL}, 6.5 \mathrm{mmol}$) in hexanes was added. The mixture was allowed to stir for 5 min , and then enamide $\mathbf{1 0 a}(3.33 \mathrm{~g}, 6.43$ $\mathrm{mmol})$ in THF (20 mL) was added. The reaction was stirred at -78 ${ }^{\circ} \mathrm{C}(5 \mathrm{~min}), 0^{\circ} \mathrm{C}(3 \mathrm{~h})$, and room temperature $(2 \mathrm{~h})$. The reaction was quenched with excess $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated) and concentrated in vacuo. The aqueous phase was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 25 \mathrm{~mL})$, and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Flash chromatography (EtOAc/hexane; 1:4) afforded benzyl ester 11a ($2.29 \mathrm{~g}, 73 \%$) as a colorless solid. Mp $68-72^{\circ} \mathrm{C} ;[\alpha]^{24}{ }_{\mathrm{D}}+85^{\circ}\left(c 2.0, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR $\delta 2.05(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~m}$, $1 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.26(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 6.0(\mathrm{~m}, 2 \mathrm{H}), 6.70-7.50(\mathrm{~m}, 7 \mathrm{H}) . \mathrm{IR}$ $\left(\mathrm{CHCl}_{3}\right) 1730,1630 \mathrm{~cm}^{-1}$. CIMS m/z (rel intensity) 500 and $498\left(\mathrm{M}^{+}\right.$ $+1,4), 420$ (5), 266 (15), 133 (40), 107 (45), 91 (100). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NO}_{6} \mathrm{Br}: \mathrm{C}, 57.85 ; \mathrm{H}, 4.05 ; \mathrm{N}, 2.81$. Found: C, $57.86 ; \mathrm{H}$, 4.39; N, 2.65.
(3aS,4S,5R)-N-(6-Iodopiperonyloyl)-4,5-epoxy-5,6-dihydro-4H-3a-(benzyloxycarbonyl)-indoline (11b). A solution of $\mathrm{BnOH}(1.90$ $\mathrm{g}, 17.7 \mathrm{mmol})$ in THF (75 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and a 2.5 M solution of BuLi ($5.20 \mathrm{~mL}, 13 \mathrm{mmol}$) in hexanes was added. The mixture was allowed to stir for 5 min and then enamide $\mathbf{1 0 b}(6.67 \mathrm{~g}$, 11.8 mmol) in THF (35 mL) was added. The reaction was stirred at $-78^{\circ} \mathrm{C}(5 \mathrm{~min}), 0^{\circ} \mathrm{C}(3 \mathrm{~h})$, and room temperature $(2 \mathrm{~h})$. The reaction was quenched with excess $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated) and concentrated in vacuo. The aqueous phase was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 25 \mathrm{~mL})$, and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Flash chromatography ($\mathrm{EtOAc} /$ hexane; 1:4) afforded benzyl ester 11b ($5.92 \mathrm{~g}, 92 \%$) as a colorless solid. Mp $57-63{ }^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}+73.5^{\circ}\left(c 2.45, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 2.05(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H})$, $3.45(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J$ $=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H}), 6.70-7.50$ (m, 7 H). IR $\left(\mathrm{CDCl}_{3}\right) 1739,1630 \mathrm{~cm}^{-1}$. CIMS m / z (rel intensity) 546 $\left(\mathrm{M}^{+}+1,4\right), 420$ (25), 266 (40), 133 (55), 107 (70), 91 (100).
(2R,3S,12S,15R,16R)-2,3-Epoxy-12-(benzyloxycarbonyl)-9,10[methylenebis $(\boldsymbol{o x y})$]galanthan-7-one (12). A solution of ester 11a $(1.10 \mathrm{~g}, 2.2 \mathrm{mmol}), \mathrm{Bu}_{3} \mathrm{SnH}(960 \mathrm{mg}, 3.30 \mathrm{mmol})$, AIBN ($40 \mathrm{mg}, 0.24$ mmol), and benzene (240 mL) was degassed for 15 min and then refluxed for 16 h (until the complete disappearance of starting material was observed by TLC). The solvent was evaporated, and the organic residue was partitioned between MeCN and hexane. The MeCN layer was washed with hexane (four times) and after solvent removal, flash chromatography (EtOAc/hexane; 1:1) afforded lactam 12 (490 mg , 53%) as a colorless solid ($\mathrm{mp} 203{ }^{\circ} \mathrm{C}$, recrystallized from EtOAc/ hexane) and enamide 11c (45\%). (12): $[\alpha]^{24}{ }_{\mathrm{D}}+86^{\circ}$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.66\left(\mathrm{dd}, J=15.1,14.7 \mathrm{~Hz}, 1 \mathrm{H}, H_{\text {lax }}\right), 2.12$ (ddd, $\left.J=12.5,12.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}, H_{4}\right), 2.47\left(\mathrm{dd}, J=4.9,12.7 \mathrm{~Hz}, 1 \mathrm{H}, H_{4}\right)$, $2.66\left(\mathrm{~m}, 2 \mathrm{H}, H_{l 5}, H_{\text {leq }}\right), 3.21\left(\mathrm{ddd}, J=12.5,11.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}, H_{5}\right)$, $3.45\left(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, H_{3}\right), 3.58\left(\mathrm{~m}, 1 \mathrm{H}, H_{2}\right), 4.09(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}, H_{I 6}\right), 4.16\left(\mathrm{dd}, J=7.3,11.7 \mathrm{~Hz}, 1 \mathrm{H}, H_{5}\right), 5.25(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.30(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 7.25-$ $7.38(\mathrm{~m}, 5 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 172.26,162.65,150.59$, $146.83,135.38,135.11,128.60,128.42,128.10,124.82,108.46,103.62$,
$101.60,67.57,60.04,53.96,53.81,53.44,43.80,36.57,32.50,25.05$. IR $\left(\mathrm{CHCl}_{3}\right) 1732,1641 \mathrm{~cm}^{-1}$. CIMS m / z (rel intensity) $420\left(\mathrm{M}^{+}+1\right.$, 100), 330 (24), 286 (25). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{6}: \mathrm{C}, 68.73$; H, 5.05; N, 3.34. Found: C, 68.38; H, 5.14; N, 3.10.
(3aS,4S,5R)- N -(Piperonyloyl)-4,5-epoxy-5,6-dihydro-4H-3a-(benzyloxycarbonyl)indoline (11c). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.98$ (ddd, $J=$ $9.5,11,20.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{dd}, J=7,12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.38(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H})$, $5.24(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 2 \mathrm{H})$, $6.65(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.1-7.5(\mathrm{~m}, 7 \mathrm{H}) . \gamma=300 \mathrm{~nm}(\epsilon=5246$, $\mathrm{PhH}) \gamma_{\max }=295 \mathrm{~nm}(\epsilon=5485, \mathrm{PhH})$. IR $\left(\mathrm{CHCl}_{3}\right) 1730,1630 \mathrm{~cm}^{-1}$. CIMS m / z (rel intensity) $420\left(\mathrm{M}^{+}+1,100\right), 149$ (16). CI HRMS (methane) $\mathrm{m} / \mathrm{z} 420.1444(\mathrm{M}+1)$. Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{6}: 420.1447$.

Alternate Procedure. A solution of ester $\mathbf{1 1 b}(600 \mathrm{mg}, 1.10 \mathrm{mmol})$, $\mathrm{Bu}_{3} \mathrm{SnH}(476 \mathrm{mg}, 1.65 \mathrm{mmol})$, AIBN ($18 \mathrm{mg}, 0.11 \mathrm{mmol}$), and benzene $(120 \mathrm{~mL})$ was degassed for 15 min and then refluxed for 5 h (until the complete disappearance of starting material was observed by TLC). The solvent was evaporated, and the organic residue was partitioned between MeCN and hexane. The MeCN layer was washed with hexane (four times), and after solvent removal, flash chromatography (EtOAc/ hexane; 1:1) afforded lactam $12(235 \mathrm{mg}, 51 \%)$ as a colorless solid. ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture indicated that $\mathbf{1 2}$ and 11c were present in a ratio of $\sim 1: 1$.

Photolysis of Enamide 11c. A solution of enamide 11c (50 mg , 0.12 mmol) and benzene (6 mL) in a Pyrex test tube was degassed with nitrogen for 15 min . The mixture was irradiated (7 h) and then concentrated. Flash chromatography (EtOAc/hexanes, 1:1) afforded a colorless solid ($40 \mathrm{mg}, 80 \%$) which consisted of lactams 12, 20, and 17 (1.1:2.7:1 ratio by $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR). Analytical samples were obtained by radial chromatography (EtOAc/hexanes, 1:1).
(2R,3S,12S)-2,3-Epoxy-12-(benzyloxycarbonyl)-15,16-didehydro-9,10-[methylenebis(oxy)]galanthan-7-one (20). Mp $118{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{dd}, J=5.8,17.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.60(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{ddd}, J=5.6,12$, $12 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=8.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.22(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.1(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}$, $1 \mathrm{H}), 7.32(\mathrm{~m}, 5 \mathrm{H})$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1730,1675,1600 \mathrm{~cm}^{-1}$. CIMS m / z (rel intensity) $418\left(\mathrm{M}^{+}+1,55\right), 266$ (65), 147 (25), 91 (100). CI HRMS (methane) m / z 418.1291 $(\mathrm{M}+1)$. Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NO}_{6}$: 418.1291.
$2 R, 3 S, 12 S, 15 S, 16 R$)-2,3-Epoxy-12-(benzyloxycarbonyl)-9,10-[methylenebis(oxy)galanthan-7-one (17). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.78$ (dd, $\left.J=11,15 \mathrm{~Hz}, 1 \mathrm{H}, H_{l a x}\right), 2.20(\mathrm{ddd}, J=2.5,6,16 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.H_{l e q}\right), 2.32(\mathrm{~m}, 2 \mathrm{H}), 3.03\left(\mathrm{~m}, 1 \mathrm{H}, H_{15}\right), 3.34\left(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}, H_{3}\right)$, $3.38\left(\mathrm{~m}, 1 \mathrm{H}, H_{2}\right), 3.60\left(\mathrm{~m}, 1 \mathrm{H}, H_{5}\right), 3.93\left(\mathrm{~m}, 1 \mathrm{H}, H_{5}\right), 4.35(\mathrm{~d}, J=$ $\left.3 \mathrm{~Hz}, 1 \mathrm{H}, H_{16}\right), 5.25(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1$ $\mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~m}$, $5 \mathrm{H})$. CIMS m / z (rel intensity) $420\left(\mathrm{M}^{+}+1,100\right), 330$ (12), 286 (20). CI HRMS (methane) $m / z 420.1442(\mathrm{M}+1)$. Calcd for $\mathrm{C}_{24} \mathrm{H}_{22}-$ NO_{6} : 420.1447.

Photolysis of Enamide 11c in the Presence of Thiophenol. A solution of enamide $\mathbf{1 1 c}(70 \mathrm{mg}, 0.17 \mathrm{mmol})$, benzene $(8.5 \mathrm{~mL})$, and thiophenol $(0.1 \mathrm{~mL})$ in a Pyrex test tube was degassed with nitrogen for 15 min . The mixture was irradiated (7 h) and then concentrated. Flash chromatography (EtOAc/hexanes, 1:1) afforded a colorless solid $(42 \mathrm{mg}, 60 \%)$ which consisted of lactams 12 and 17 (2:1 ratio by 500 $\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR).
($2 R, 3 S, 12 S, 15 R, 16 R$)-2,3-Epoxy-12-(hydroxycarbonyl)-9,10-[methylenebis(oxy)]galanthan-7-one (21a). A mixture of lactam 12 ($260 \mathrm{mg}, 0.62 \mathrm{mmol}$), abs. EtOH (26 mL) and $10 \% \mathrm{Pd} / \mathrm{C}(260 \mathrm{mg}$; Alfa) was stirred under (1 atm) H_{2} for 3 h . The mixture was filtered through Celite, and the Celite was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrate was concentrated to give acid 21a ($172 \mathrm{mg}, 84 \%$) as a colorless solid (mp 214-219 ${ }^{\circ} \mathrm{C},-\mathrm{CO}_{2}$), which was used without further purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.65(\mathrm{dd}, J=15.9,14.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.17 (ddd, $J=7.8,11.0,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=5.2,12.5 \mathrm{~Hz}, 1$ H), $2.67(\mathrm{~m}, 2 \mathrm{H}), 3.34$ (ddd, $J=5.6,12.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J$ $=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=3.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=12.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.20(\mathrm{dd}, J=7.8,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H})$, 7.42 ($\mathrm{s}, 1 \mathrm{H}$); IR (KBr) $3420,1715,1625 \mathrm{~cm}^{-1}$; CIMS m / z (rel intensity) $330\left(\mathrm{M}^{+}+1,16\right), 315$ (40), 262 (80), 232 (100).
(2R,3S,12S,15R,16R)-2,3-Epoxy-12-(3-hydroxy-4-methyl-2(3H)thiazolethione) carbonyl-9,10-[methylenebis(oxy)]galanthan-7-one (21b). The acid 21a ($266 \mathrm{mg}, 0.809 \mathrm{mmol}$) was combined with DCC ($253 \mathrm{mg}, 1.23 \mathrm{mmol}$), 4-pyrrolidinopyridine ($61 \mathrm{mg}, 0.41 \mathrm{mmol}$), 3-hydroxy-4-methyl-2(3 H)-thiazolethione ($180 \mathrm{mg}, 1.2 \mathrm{mmol}$), and $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}(50 \mathrm{~mL})$ and stirred for 12 h in the dark. The mixture was concentrated and flash chromatography (EtOAc/hexane; 1:1) afforded ester 21b ($318 \mathrm{mg}, 86 \%$) as a colorless solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $1.69\left(\mathrm{~m}, 1 \mathrm{H}, H_{l a x}\right), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.40\left(\mathrm{~m}, 1 \mathrm{H}, H_{4}\right), 2.74(\mathrm{~m}, 2 \mathrm{H}$, $H_{l 5}, H_{\text {leq }}$), 3.36 (dd, $J=5.4,12.9 \mathrm{~Hz}, 1 \mathrm{H}, H_{4}$), 3.59 (ddd, $J=4.9$, $\left.12.5,11.2 \mathrm{~Hz}, 1 \mathrm{H}, H_{5}\right), 3.65\left(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, H_{3}\right), 3.69(\mathrm{~m}, 1 \mathrm{H}$, H_{2}), $4.04\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, H_{16}\right), 4.28(\mathrm{dd}, J=8.1,12.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.H_{5}\right), 6.02(\mathrm{~s}, 2 \mathrm{H}), 6.26(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H})$.
($\mathbf{2 R}, \mathbf{1 5 R}, 16 R$)-2-Hydroxy-3,12-didehydro-9,10-[methylenebis-(oxy)]galanthan-7-one (22). To ester 21b ($318 \mathrm{mg}, 0.694 \mathrm{mmol}$) were added benzene (56 mL), $\mathrm{Bu}_{3} \mathrm{SnH}(303 \mathrm{mg}, 1.03 \mathrm{mmol}$), and AIBN (11 $\mathrm{mg}, 0.067 \mathrm{mmol})$. The mixture was purged with nitrogen gas and then refluxed for 2 h . The reaction was recharged with $\mathrm{Bu}_{3} \mathrm{SnH}(202 \mathrm{mg}$, 0.69 mmol) and AIBN ($11 \mathrm{mg}, 0.067 \mathrm{mmol}$), refluxed for 1 h , and then the solvent was evaporated. The organic residue was partitioned between MeCN and hexane, and the MeCN layer was washed with hexane (five times). The combined MeCN solution was concentrated and flash chromatography ($\mathrm{MeOH} / \mathrm{EtOAc} ; 1: 9$) afforded alcohol 22 as a colorless solid ($98 \mathrm{mg}, 50 \%$). Mp $231^{\circ} \mathrm{C} .[\alpha]^{27}{ }_{\mathrm{D}}+80.6^{\circ}$ (c 1.65 , THF). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.52$ (ddd, $J=9.5,12.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.H_{l a x}\right), 1.76(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, O H), 2.75\left(\mathrm{~m}, 4 \mathrm{H}, H_{l 5}, H_{4}, H_{4}, H_{l e q}\right)$, $3.73\left(\mathrm{~m}, 1 \mathrm{H}, H_{5}\right), 3.82\left(\mathrm{~m}, 1 \mathrm{H}, H_{5}\right), 3.89\left(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}, H_{l 6}\right)$, $4.67\left(\mathrm{~m}, 1 \mathrm{H}, H_{2}\right), 5.66\left(\mathrm{~m}, 1 \mathrm{H}, H_{3}\right), 6.02(\mathrm{~s}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 7.55$ (s, 1 H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{MeOH}\right.$; 9:1) 163.42, 150.67, 146.60, 140.30, 135.86, 125.29, 122.67, 108.31, 103.36, 101.60, 68.55, 60.23, $43.31,39.99,32.15,28.08$. IR $\left(\mathrm{CHCl}_{3}\right) 3600,1640 \mathrm{~cm}^{-1}$. CIMS m/z (rel intensity) $286\left(\mathrm{M}^{+}+1,100\right), 268$ (40).
($2 S, 15 R, 16 R$)-2-Acetyloxy-3,12-didehydro-9,10-[methylenebis-(oxy)]galanthan-7-one (23a). To a solution of alcohol 22 ($9 \mathrm{mg}, 0.03$ $\mathrm{mmol})$ and THF (1.5 mL) were added $\mathrm{PPh}_{3}(12 \mathrm{mg}, 0.045 \mathrm{mmol})$, $\mathrm{AcOH}(3 \mathrm{mg}, 0.05 \mathrm{mmol})$ and DEAD [$(8 \mathrm{mg}, 0.05 \mathrm{mmol})$ in THF (0.5 $\mathrm{mL})$]. The mixture was stirred (24 h) and concentrated, and flash chromatography (EtOAc/hexane; 1:1) afforded acetate $\mathbf{2 3 a}$ ($5 \mathrm{mg}, 50 \%$) as a colorless solid $\left(\mathrm{mp} 223^{\circ} \mathrm{C}\right)$ and recovered starting material (44%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.84\left(\mathrm{ddd}, J=5.2,13.2,13.1 \mathrm{~Hz}, 1 \mathrm{H}, H_{\text {lax }}\right), 2.08$ $(\mathrm{s}, 3 \mathrm{H}), 2.43\left(\mathrm{dd}, J=14.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}, H_{\text {leq }}\right), 2.80\left(\mathrm{~m}, 2 \mathrm{H}, H_{4}, H_{4}\right)$, $2.85\left(\mathrm{ddd}, J=2.9,12.7,12.5 \mathrm{~Hz}, 1 \mathrm{H}, H_{l 5}\right), 3.72(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, H_{16}\right), 3.82\left(\mathrm{~m}, 2 \mathrm{H}, H_{5}, H_{5}\right), 5.57\left(\mathrm{~m}, 1 \mathrm{H}, H_{2}\right), 5.65\left(\mathrm{~m}, 1 \mathrm{H}, H_{3}\right)$, $6.02(\mathrm{~s}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H})$. IR $\left(\mathrm{CHCl}_{3}\right) 1720,1640$ $\mathrm{cm}^{-1} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 170.44,163.01,150.56,146.74,143.68$, 135.52, 126.04, 117.48, 108.80, 103.51, 101.65, 67.87, 60.50, 43.53, 35.83 , 29.05, 28.60, 21.31. CIMS m / z (rel intensity) $328\left(\mathrm{M}^{+}+1\right.$, 100), 268 (80).
(2S,15R,16R)-2-Benzyloxy-3,12-didehydro-9,10-[methylenebis-(oxy)]galanthan-7-one (23b). To a solution of alcohol $22(27 \mathrm{mg}$, $0.095 \mathrm{mmol})$ and THF (4 mL) were added $\mathrm{PPh}_{3}(35 \mathrm{mg}, 0.13 \mathrm{mmol})$, $\mathrm{BzOH}(16 \mathrm{mg}, 0.13 \mathrm{mmol})$ and DEAD [$(24 \mathrm{mg}, 0.13 \mathrm{mmol})$, in THF $(2 \mathrm{~mL})]$. The mixture was stirred $(24 \mathrm{~h})$ and concentrated, and flash chromatography (EtOAc/hexane; 1:1) afforded benzoate 23b (27 mg , 73%) as a colorless solid (mp 199-203 ${ }^{\circ} \mathrm{C}$). $[\alpha]^{24} \mathrm{D}-195^{\circ}(c, 0.22$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.96$ (ddd, $J=5.4,13.2,13.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.H_{l a x}\right), 2.59\left(\mathrm{dd}, J=14.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}, H_{\text {leq }}\right), 2.84\left(\mathrm{~m}, 2 \mathrm{H}, H_{4}, H_{4}\right)$, $2.98\left(\mathrm{ddd}, J=2.6,12.7,12.4 \mathrm{~Hz}, 1 \mathrm{H}, H_{l 5}\right), 3.79(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, H_{16}\right), 3.85\left(\mathrm{~m}, 2 \mathrm{H}, H_{5}, H_{5}\right), 5.78\left(\mathrm{~m}, 1 \mathrm{H}, H_{2}\right), 5.84\left(\mathrm{~m}, 1 \mathrm{H}, H_{3}\right)$, $6.01(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 7.4-8.1(\mathrm{~m}, 6 \mathrm{H}) . \operatorname{IR}\left(\mathrm{CHCl}_{3}\right)$ $1710,1640 \mathrm{~cm}^{-1} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 165.91,163.03,150.58,146.74$, $143.85,135.52,133.19,130.07,129.65,128.40,126.03,117.51,108.80$, 108.73, 103.57, 103.50, 101.63, 68.34, 60.58, 43.53, 35.94, 29.15, 28.59. CIMS m / z (rel intensity) $390\left(\mathrm{M}^{+}+1,2\right), 268$ (6), 266 (28), 123 (100). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{5}-0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 69.34, \mathrm{H} .5 .06, \mathrm{~N}, 3.52$. Found: C, 69.72; H, 4.90; N, 3.40.
(\pm)-1-Deoxylycorine (2a). (\pm)-1-Deoxylycorin-7-one ($10 \mathrm{mg}, 0.04$ mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, and 4-(dimethylamino)pyridine ($1 \mathrm{mg}, 0.008 \mathrm{mmol}$), triethylamine ($4 \mathrm{mg}, 0.04 \mathrm{mmol}$), and acetic anhydride ($4 \mathrm{mg}, 0.04 \mathrm{mmol}$) were added. The solution was stirred at room temperature for 1 h and was washed with $10 \% \mathrm{HCl}$ followed by NaHCO_{3} (sat). The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent
was evaporated. Flash chromatography (EtOAc/hexanes, 1:4 then 1:1) afforded (\pm)-23a as a colorless solid ($12 \mathrm{mg}, 91 \%$). A solution of $(\pm)-23 a(11 \mathrm{mg}, 0.034 \mathrm{mmol}), \mathrm{LiAlH}_{4}(13 \mathrm{mg}, 0.34 \mathrm{mmol})$, and THF $(2 \mathrm{~mL})$ was refluxed for 3 h and then quenched by sequential dropwise addition of $\mathrm{H}_{2} \mathrm{O}(0.013 \mathrm{~mL}), 15 \% \mathrm{NaOH}(0.013 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(0.039$ mL). Filtration of the mixture followed by flash chromatography of the concentrated filtrate ($10 \% \mathrm{MeOH} / \mathrm{EtOAc}$) afforded (\pm)-1-deoxylycorine ($\mathbf{2 a}$) ($7 \mathrm{mg}, 76 \%$) as a colorless solid, $\mathrm{mp} 153{ }^{\circ} \mathrm{C}$.
(+)-1-Deoxylycorine (2a). A solution of acetate $\mathbf{2 3 a}$ ($15 \mathrm{mg}, 0.046$ $\mathrm{mmol}), \mathrm{LiAlH}_{4}(15 \mathrm{mg}, 0.39 \mathrm{mmol})$, and THF (1 mL) was refluxed for 3 h and then quenched by sequential dropwise addition of $\mathrm{H}_{2} \mathrm{O}$ $(0.015 \mathrm{~mL}), 15 \% \mathrm{NaOH}(0.015 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(0.045 \mathrm{~mL})$. Filtration of the mixture followed by flash chromatography of the concentrated filtrate ($10 \% \mathrm{MeOH} / \mathrm{EtOAc}$) afforded (+)-1-deoxylycorine (2a) (9 mg , 73%) as a colorless solid, which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CHCl}_{3} /$ hexanes. Mp $155{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}+48^{\circ}\left(c 0.46, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.64$ (ddd, $\left.J=4.9,13.4,13.4 \mathrm{~Hz}, 1 \mathrm{H}, H_{l a x}\right), 2.35\left(\mathrm{~m}, 2 \mathrm{H}, H_{l 5}\right)$, $2.44\left(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}, H_{\text {leq }}\right), 2.58(\mathrm{~m}, 2 \mathrm{H}), 2.63\left(\mathrm{~m}, 1 \mathrm{H}, H_{l 5}\right)$, $3.32(\mathrm{~m}, 1 \mathrm{H}), 3.53\left(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}, H_{7}\right), 4.14(\mathrm{~d}, J=13.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}, H_{7}\right), 4.41\left(\mathrm{~s}, 1 \mathrm{H}, H_{2}\right), 5.56\left(\mathrm{~s}, 1 \mathrm{H}, H_{3}\right), 5.92(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1$ $\mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 146.38,145.95$, 143.93, 130.99, 128.69, 119.73, 107.14, 105.14, 100.88, 67.43, 66.30, $56.84,53.63,34.87,34.00,28.62$. IR $\left(\mathrm{CHCl}_{3}\right) 3600 \mathrm{~cm}^{-1}$. CIMS m / z (rel intensity) $272\left(\mathrm{M}^{+}+1,100\right), 254$ (90).

Alternate Procedure. A solution of benzoate 23b ($20 \mathrm{mg}, 0.05$ $\mathrm{mmol}), \mathrm{LiAlH}_{4}(12 \mathrm{mg}, 0.31 \mathrm{mmol})$, and THF $(1 \mathrm{~mL})$ was refluxed for 3 h and then quenched by sequential dropwise addition of $\mathrm{H}_{2} \mathrm{O}$ $(0.012 \mathrm{~mL}), 15 \% \mathrm{NaOH}(0.012 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.036 \mathrm{~mL})$. Filtration of the mixture followed by flash chromatography of the concentrated filtrate ($10 \% \mathrm{MeOH} / \mathrm{EtOAc}$) afforded (+)-1-deoxylycorine (2a) (10.2 $\mathrm{mg}, 76 \%$).
(+)-2-epi-1-Deoxylycorine (24). A solution of alcohol 22 (143 mg , $0.502 \mathrm{mmol}), \mathrm{LiAlH}_{4}(0.19 \mathrm{~g}, 5.0 \mathrm{mmol})$, and THF (25 mL) was refluxed for 6 h and then quenched by sequential dropwise addition of $\mathrm{H}_{2} \mathrm{O}(0.19 \mathrm{~mL}), 15 \% \mathrm{NaOH}(0.19 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(0.57 \mathrm{~mL})$. Filtration of the mixture followed by flash chromatography of the concentrated filtrate ($10 \% \mathrm{MeOH} / \mathrm{EtOAc}$) afforded (+)-2-epi-1-deoxylycorine 24 ($105 \mathrm{mg}, 77 \%$) as a colorless solid. $\mathrm{Mp} 60-64^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}+105^{\circ}(c$ $0.21, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.41$ (ddd, $J=9.1,12.2,12.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}, H_{\text {lax }}\right), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.60\left(\mathrm{~m}, 4 \mathrm{H}, H_{l 5}\right), 2.73\left(\mathrm{~m}, 1 \mathrm{H}, H_{\text {leq }}\right), 3.26$ $(\mathrm{m}, 1 \mathrm{H}), 3.56\left(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}, H_{7}\right), 4.08(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.H_{7}\right), 4.64\left(\mathrm{~m}, 1 \mathrm{H}, H_{2}\right), 5.52\left(\mathrm{~s}, 1 \mathrm{H}, H_{3}\right), 5.92(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.93(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ $3600 \mathrm{~cm}^{-1} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 146.28,145.87,142.91,130.56,128.53$, $121.28,107.12,104.89,100.80,69.59,66.90,56.63,53.65,39.82,34.59$, 28.30. CIMS m / z (rel intensity) $272\left(\mathrm{M}^{+}+1,50\right), 254$ (100).
(+)-1-Deoxylycorin-2-one (25). A solution of alcohol 24 (104 mg, $0.38 \mathrm{mmol}), \mathrm{MnO}_{2}(330 \mathrm{mg}, 3.80 \mathrm{mmol})$, and $\mathrm{CHCl}_{3}(25 \mathrm{~mL})$ was stirred at room temperature for 6 h . The mixture was filtered through Celite, and the filtrate was concentrated and chromatographed (EtOAc) to give enone $\mathbf{2 5}$ as a colorless solid ($65 \mathrm{mg}, 63 \%$). Mp $157-8{ }^{\circ} \mathrm{C}$ (dec); $[\alpha]^{24}{ }_{\mathrm{D}}+164^{\circ}$ (c 0.33, dioxane). Reported for (-)-25: $\mathrm{mp} 157-8$ ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{24}-169^{\circ}$ (c 0.490, dioxane). ${ }^{29}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.28(\mathrm{dd}$, $\left.J=13.5,16.4 \mathrm{~Hz}, 1 \mathrm{H}, H_{l a x}\right), 2.53\left(\mathrm{dd}, J=8.5,17.1 \mathrm{~Hz}, 1 \mathrm{H}, H_{4}\right)$, $2.84\left(\mathrm{~m}, 3 \mathrm{H}, H_{16}, H_{4}, H_{5}\right), 3.05\left(\mathrm{dd}, J=4.4,16.6 \mathrm{~Hz}, 1 \mathrm{H}, H_{l e q}\right), 3.12$ $\left(\mathrm{m}, 1 \mathrm{H}, H_{15}\right), 3.43\left(\mathrm{~m}, 1 \mathrm{H}, H_{5}\right), 3.63\left(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}, H_{7}\right), 4.18$ (d, $\left.J=13.9 \mathrm{~Hz}, 1 \mathrm{H}, H_{7}\right), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~m}, 1 \mathrm{H}$, $\left.H_{3}\right), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ 198.63, 167.73, $146.47,146.31,129.48,128.06,122.14,107.09,104.90,100.97,67.28$, 56.19, 53.20, 40.40, 39.97, 29.70. IR $\left(\mathrm{CHCl}_{3}\right) 1655 \mathrm{~cm}^{-1}$.

Alternate Procedure. A solution of (+)-1-deoxylycorine (2a) (4.0 $\mathrm{mg}, 0.015 \mathrm{mmol}), \mathrm{MnO}_{2}(13 \mathrm{mg}, 0.15 \mathrm{mmol})$, and $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$ was stirred at room temperature for 6 h . The mixture was filtered through Celite, and the filtrate was concentrated and chromatographed (EtOAc) to give enone $\mathbf{2 5}$ as a colorless solid ($2.6 \mathrm{mg}, 63 \%$). Mp $157-8^{\circ} \mathrm{C}$.

Reduction of (+)-1-Deoxylycorin-2-one (25). A solution of enone $25(4 \mathrm{mg}, 0.015 \mathrm{mmol}), \mathrm{NaBH}_{4}(2 \mathrm{mg}, 0.053 \mathrm{mmol})$, and EtOH (2 mL) were stirred at room temperature for 30 min . The reaction was quenched by dropwise addition of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated), concentrated in vacuo, diluted with $\mathrm{NaHCO}_{3}\left(5 \mathrm{~mL}\right.$, saturated), and extracted with $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}(5 \times 2 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and chromatographed ($10 \% \mathrm{MeOH} / \mathrm{EtOAc}$) to give (+)-

2-epi-1-deoxylycorine (24) and 2a as a 10:1 mixture of diastereomers by $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR ($3 \mathrm{mg}, 75 \%$). $\mathrm{Mp} 98^{\circ} \mathrm{C}$.
(2R,3S,12S,15R,16R)-3-Hydroxy-7-keto-9,10-[methylenebis(oxy)]-galanthan-12,2-carbolactone (28). A solution of acid 21a ($5 \mathrm{mg}, 0.02$ $\mathrm{mmol})$ and water $(10 \mathrm{~mL})$ was refluxed for 5 h . The solution was cooled to room temperature and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times)$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to afford lactone 28 as a colorless solid ($4 \mathrm{mg}, 80 \%$). Mp $144{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 2.09\left(\mathrm{dd}, J=12.7,15.1 \mathrm{~Hz}, 1 \mathrm{H}, H_{l a x}\right), 2.38\left(\mathrm{~m}, 1 \mathrm{H}, H_{4}\right), 2.61(\mathrm{~m}$, $\left.2 \mathrm{H}, H_{4}, H_{l e q}\right), 3.21\left(\mathrm{ddd}, J=6.8,13.2,13.2 \mathrm{~Hz}, 1 \mathrm{H}, H_{15}\right), 3.67(\mathrm{~d}$, $\left.J=13.7 \mathrm{~Hz}, 1 \mathrm{H}, H_{16}\right), 3.82\left(\mathrm{~m}, 1 \mathrm{H}, H_{5}\right), 3.92\left(\mathrm{~m}, 1 \mathrm{H}, H_{5}\right), 4.71(\mathrm{~s}$, $\left.1 \mathrm{H}, H_{3}\right), 4.88\left(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, H_{2}\right), 6.02(\mathrm{~s}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H})$, 7.48 (s, 1 H). IR (film) $3350,1775,1625 \mathrm{~cm}^{-1}$. CIMS m/z (rel intensity) $330\left(\mathrm{M}^{+}+1,68\right), 286$ (30), 156 (100).
(15R,16R)-2-(tert-Butyldimethylsilyloxy)-2,3,4,12-tetrahydro-9,10[methylenebis(oxy)]galanthan (29). To a solution of enone 25 (20 $\mathrm{mg}, 0.07 \mathrm{mmol})$, triethylamine $(0.24 \mathrm{~g}, 2.4 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added tert-butyldimethylsilyl triflate $(0.26 \mathrm{~g}, 1.2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction was allowed to warm and stirred for 1 h at room temperature. The solvent was evaporated, and the residue was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{NaHCO}_{3}(\mathrm{aq})$. The aqueous layer was extracted $(3 \times)$ with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent and flash chromatography (EtOAc) of the residue afforded enol ether 29 ($26 \mathrm{mg}, 93 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}$, $9 \mathrm{H}), 2.40\left(\mathrm{dd}, J=12.7,15.2 \mathrm{~Hz}, 1 \mathrm{H}, H_{\text {lax }}\right), 2.67(\mathrm{dd}, J=16.8,5.1$ $\left.\mathrm{Hz}, 1 \mathrm{H}, H_{l e q}\right), 2.90\left(\mathrm{ddd}, J=5.1,11.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}, H_{15}\right), 3.14(\mathrm{~m}$, $\left.1 \mathrm{H}, H_{16}\right), 3.66(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=13.4$ $\left.\mathrm{Hz}, 1 \mathrm{H}, H_{7}\right), 3.97\left(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, H_{7}\right), 5.31\left(\mathrm{~s}, 1 \mathrm{H}, H_{4}\right), 5.61$ $\left(\mathrm{d}, J=5.31 \mathrm{~Hz}, 1 \mathrm{H}, H_{4}\right), 5.61\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, H_{3}\right), 5.92(\mathrm{~s}, 1 \mathrm{H})$, $5.93(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H})$.

Alternate Procedure. A flask was cooled to $-78^{\circ} \mathrm{C}$ and charged with $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}(1 \mathrm{M}$ in THF; 0.1 mL$)$. Enone $25(8 \mathrm{mg}, 0.03 \mathrm{mmol})$ was dissolved in THF (1 mL) and added to the flask via syringe. The reaction stirred at $-78^{\circ} \mathrm{C}$ for 10 min , and then a solution of TBDMSCl $(7 \mathrm{mg}, 0.05 \mathrm{mmol})$ in THF (1 mL) was rapidly added. The reaction was allowed to warm to room temperature and was quenched with NH_{4} Cl (saturated). The solvent was evaporated, and the mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and NaHCO_{3} (saturated), and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 500 \mathrm{MHz}$) analysis of the crude reaction mixture showed enol ether 29 as the only product.
(2S,3S,12S,15R,16R)-2-Phenylseleno-3-hydroxy-12-(benzyloxycar-bonyl)-9,10-[methylenebis(oxy)]galanthan-7-one (30). Epoxide 12 $(50 \mathrm{mg}, 0.1 \mathrm{mmol})$ was stirred as a suspension in absolute EtOH (25 $\mathrm{mL})$. Diphenyldiselenide ($93 \mathrm{mg}, 0.30 \mathrm{mmol}$) was added in one portion, and stirring continued for 15 min at room temperature. Sodium borohydride ($23 \mathrm{mg}, 0.61 \mathrm{mmol}$) was added slowly [CAUTION, exothermic], and the mixture was stirred for 1 h at room temperature. The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$, and the EtOH was evaporated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$ and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent and flash chromatography ($\mathrm{EtOAc} /$ hexanes, 1:3) afforded selenide 30 as a colorless solid ($64 \mathrm{mg}, 93 \%$). Mp $124{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.88(\mathrm{ddd}, J=8.3,10.7,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38\left(\mathrm{~m}, 1 \mathrm{H}, H_{\text {lax }}\right)$, $2.59\left(\mathrm{~m}, 1 \mathrm{H}, H_{\text {leq }}\right), 2.71\left(\mathrm{ddd}, J=5.8,13.1,13.1 \mathrm{~Hz}, 1 \mathrm{H}, H_{15}\right), 3.05$ $(\mathrm{dd}, J=5.4,13 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{ddd}, J=5.6,12.2,12.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.87\left(\mathrm{~m}, 1 \mathrm{H}, H_{2}\right), 3.95\left(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, H_{16}\right), 4.15(\mathrm{dd}, J=7.5$, $11.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 172.59,161.83,150.64,146.74$, 135.64, 135.52, 135.18, 129.41, 128.66, 128.46, 128.11, 126.28, 124.46, $108.39,103.93,101.61,75.97,67.51,64.07,57.50,44.47,43.54,35.61$, 34.44, 30.86. IR $\left(\mathrm{CHCl}_{3}\right) 3450,1720,1640 \mathrm{~cm}^{-1}$. CIMS m/z (rel intensity) $578\left(\mathrm{M}^{+}+1,1\right), 420$ (2), 330 (4), 286 (8), 315 (17), 313 (15), 213 (16), 215 (15), 159 (30). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{Se}: \mathrm{C}$, $62.50 ; H, 4.72 ;$ N, 2.43. Found: C, 62.53; H, 5.09; N, 2.32.
(1S,2S,3S,12S,15R,16R)-1,2-Epoxy-3-hydroxy-12-(benzyloxycar-bonyl)-9,10-[methylenebis(oxy)]galanthan-7-one (31). A solution of selenide $30(91 \mathrm{mg}, 1.6 \mathrm{mmol})$, THF (50 mL), and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(17 \mathrm{~mL})$ was stirred at room temperature for 2 h . The solution was concentrated and partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$ and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration and flash chromatography afforded epoxide

31 as a colorless solid ($45 \mathrm{mg}, 67 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.87$ (ddd, $J=8.3,12.4,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63\left(\mathrm{dd}, J=4.6,14.4 \mathrm{~Hz}, H_{15}\right), 2.88$ (dd, $J=5.6,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{ddd}, J=5.6,11.7,12 \mathrm{~Hz}, 1 \mathrm{H})$, $3.46\left(\mathrm{~m}, 2 \mathrm{H}, H_{3}, H_{2}\right), 3.78\left(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, H_{1}\right), 4.12(\mathrm{~d}, J=14.4$ $\mathrm{Hz}), 4.19(\mathrm{dd}, J=7.8,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ $(\mathrm{d}, J=12.2 \mathrm{~Hz}), 6.03(\mathrm{~s}, 2 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 5 \mathrm{H}), 7.45(\mathrm{~s}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.19,161.54,151.04,147.39,134.95$, 133.06, 128.74, 128.61, 128.19, 124.24, 108.69, 105.13, 101.89, 78.36, $67.72,64.74,59.68,57.43,52.41,45.85,41.82,34.19$. IR $\left(\mathrm{CHCl}_{3}\right)$ $3370,1725,1645,1260 \mathrm{~cm}^{-1}$.
(3R,12S,15R,16R)-1,2-Didehydro-3-hydroxy-12-(benzyloxycarbo-nyl)-9,10-[methylenebis(oxy)]galanthan-7-one (32). To a solution of selenide $\mathbf{3 0}$ in THF/water (1.2:1, 25 mL) was added sodium periodate $(0.47 \mathrm{~g}, 0.22 \mathrm{mmol})$, and the mixture was stirred at room temperature for 12 h . The THF was evaporated, and the aqueous remains were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent evaporated, and flash chromatography (EtOAc/ hexanes, 1:3, then EtOAc) of the residue afforded alcohol 32 as a light tan solid ($40 \mathrm{mg}, 87 \%$). Mp $138-140{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.10$ (ddd, $\left.J=8.3,11.7,11.7 \mathrm{~Hz}, 1 \mathrm{H}, H_{4}\right), 2.76(\mathrm{dd}, J=5.9,12.9 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, H_{4}\right), 3.36\left(\mathrm{dd}, J=1.5,12 \mathrm{~Hz}, 1 \mathrm{H}, H_{15}\right), 3.54(\mathrm{ddd}, J=5.9,11.5$, $\left.11.5 \mathrm{~Hz}, 1 \mathrm{H}, H_{5}\right), 3.79\left(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}, H_{16}\right), 4.25(\mathrm{dd}, J=8.1$, $\left.11.7 \mathrm{~Hz}, 1 \mathrm{H}, H_{5}\right), 4.30\left(\mathrm{~m}, 1 \mathrm{H}, H_{2}\right), 5.13(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20$ $(\mathrm{d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 2 \mathrm{H}), 6.26(\mathrm{dt}, J=2.7,9 \mathrm{~Hz}, 1 \mathrm{H}), 6.31$ $(\mathrm{dt}, J=2.7,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dt}, J=2.7,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1$ H), $7.24-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (1:9 $\left.\mathrm{CD}_{3} \mathrm{OD} / \mathrm{CDCl}_{3}\right)$ $173.36,162.25,150.85,146.82,138.13,135.15,134.08,128.42,128.15$, $127.80,124.18,123.23,108.59,104.13,101.67,75.48,67.14,65.22$, $60.68,45.35,39.17,34.08$. IR $\left(\mathrm{CHCl}_{3}\right) 3400,1710,1640 \mathrm{~cm}^{-1}$; CIMS $(\mathrm{m} / \mathrm{z}) 420\left(\mathrm{M}^{+}+1,13\right), 402(2), 330(2), 315(1), 286$ (5), 266 (14). FAB HRMS $m / z 420.1439(\mathrm{M}+\mathrm{H})^{+}$. Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{6}$: 420.1447 .
(1R,2R,3S,12S,15R,16R)-1,2-Epoxy-3-hydroxy-12-(benzyloxycar-bonyl)-9,10-[methylenebis(oxy)]galanthan-7-one (33). To a stirred mixture of allylic alcohol $32(4 \mathrm{mg}, 0.01 \mathrm{mmol})$, urea hydrogen peroxide complex ($10 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(13 \mathrm{mg}, 0.09 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added trifluoroacetic anhydride ($6 \mathrm{mg}, 0.03 \mathrm{mmol}$). The reaction was stirred 1.5 h and water was added. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$ the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent evaporated. Flash chromatography (EtOAc) afforded epoxide $31(1.6 \mathrm{mg}, 40 \%)$ and epoxide $33(1.8 \mathrm{mg}, 45 \%)$ as colorless solids. Mp $128^{\circ} \mathrm{C}$. (33): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.27(\mathrm{~m}, 1$ H), $2.41(\mathrm{dd}, J=6.6,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20\left(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}, H_{15}\right)$, 3.45 (ddd, $J=6.6,11.7,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.09\left(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}, H_{16}\right), 4.08(\mathrm{~m}$, $1 \mathrm{H}), 4.13\left(\mathrm{~m}, 1 \mathrm{H}, H_{3}\right), 5.09(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=12.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.52(\mathrm{~s}, 1$ H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 175.34,162.13,150.79,147.21,134.73,133.22$, $128.80,128.72,128.23,125.01,109.10,103.12,101.87,76.45,67.53$, $61.05,55.11,53.15,48.38,43.75,38.11,35.94$. IR $\left(\mathrm{CHCl}_{3}\right) 3450,1705$, $1640,1275 \mathrm{~cm}^{-1}$. CIMS m/z (rel intensity) $436\left(\mathrm{M}^{+}+1,2\right), 420(1)$, 374 (4), 343 (1), 137 (4), 107 (25), 91 (100). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{21^{-}}$ $\mathrm{NO}_{7}: \mathrm{C}, 66.20 ; \mathrm{H}, 4.86$; N, 3.22. Found: C, 66.02; H, 5.57; N, 2.81.
(3R,12S,15R,16R)-1,2-Didehydro-3-acetyloxy-12-(benzyloxycar-bonyl)-9,10-[methylenebis(oxy)]galanthan-7-one (34). Alcohol 32 $(35 \mathrm{mg}, 0.084 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and 4-(dimethylamino)pyridine ($1 \mathrm{mg}, 0.008 \mathrm{mmol}$), triethylamine (29 mg , $0.25 \mathrm{mmol})$, and acetic anhydride ($22 \mathrm{mg}, 0.17 \mathrm{mmol}$) were added. The solution was stirred at room temperature for 1 h and was washed with $10 \% \mathrm{HCl}$ followed by NaHCO_{3} (saturated). The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was evaporated. Flash chromatography (EtOAc/hexanes, 1:4 then 1:1) afforded acetate 34 as a colorless solid ($36 \mathrm{mg}, 92 \%$). Mp $133-7{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 1.88 (s, 3 H), 1.98 (ddd, $J=7.5,12.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}, H_{4}$), 2.93 (dd, J $\left.=5.5,13 \mathrm{~Hz}, 1 \mathrm{H}, H_{4}\right), 3.27\left(\mathrm{ddd}, J=5.5,12,12 \mathrm{~Hz}, 1 \mathrm{H}, H_{5}\right), 3.39$ $\left(\mathrm{dd}, J=1.5,12 \mathrm{~Hz}, H_{15}\right), 3.96\left(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}, H_{16}\right), 4.21(\mathrm{dd}, J$ $\left.=7.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}, H_{5}\right), 5.07(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=12$ $\mathrm{Hz}, 1 \mathrm{H}), 5.43\left(\mathrm{~m}, 1 \mathrm{H}, H_{3}\right), 6.02(\mathrm{~s}, 2 \mathrm{H}), 6.08(\mathrm{dt}, J=2.5,9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.36(\mathrm{dt}, J=3,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 7.2-7.4(\mathrm{~m}, 5 \mathrm{H})$, $7.50(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ 171.34, 169.99, 161.70, 150.82, $147.02,135.34,133.63,133.48,128.56,128.42,128.31,125.04,124.85$, $109.04,104.15,101.74,75.69,67.36,64.56,59.60,45.24,39.56,34.29$, 20.54. IR $\left(\mathrm{CHCl}_{3}\right) 1740,1730,1640 \mathrm{~cm}^{-1}$. CIMS m / z (rel intensity)
$462\left(\mathrm{M}^{+}+1,13\right), 266$ (23), 223 (3), 191 (13), 177 (10), 123 (20). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{7}$. C, 67.67; H, 5.02; N, 3.04. Found: C, 66.76; H, 5.01; N, 2.98 .
($1 S, 12 R, 15 R, 16 R$)-1-Acetyloxy-2,3-didehydro-12-(benzyloxycar-bonyl)-9,10-[methylenebis(oxy)]galanthan-7-one (35). Alcohol 33 $(10 \mathrm{mg}, 0.02 \mathrm{mmol})$ was dissolved in glacial $\mathrm{AcOH}(2 \mathrm{~mL})$ and heated to $50{ }^{\circ} \mathrm{C}$. A solution of acetic anhydride $(2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ (4 drops) was added dropwise and heating continued for 15 min . The solution was neutralized with NaHCO_{3} (saturated) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times)$. The solvent was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, and the residue was passed through a short column of silica gel (EtOAc/hexanes, 1:1) to remove polar impurities. Radial chromatography (EtOAc/hexanes, 2:3) afforded the acetate $\mathbf{3 5}(3.1 \mathrm{mg}, 34 \%)$ as a colorless solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{ddd}, J=12.5,12.5,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.61(\mathrm{dd}, J=5.4,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.97\left(\mathrm{dd}, J=2.7,13.2 \mathrm{~Hz}, 1 \mathrm{H}, H_{15}\right)$, 3.32 (ddd, $J=5.1,11.9,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=7.6,12 \mathrm{~Hz}, 1$ H), $4.69\left(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, H_{16}\right), 5.14(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25$ $(\mathrm{d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.59\left(\mathrm{dd}, J=2.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}, H_{l}\right), 6.01(\mathrm{~d}, J$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.H_{3}\right), 6.32\left(\mathrm{dd}, J=6.1,9.8 \mathrm{~Hz}, 1 \mathrm{H}, H_{2}\right), 6.55(\mathrm{~s}, 1 \mathrm{H}), 7.3-7.4(\mathrm{~m}, 5$ $\mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) 172.42,170.68,162.10,150.75$, $147.00,135.23,132.54,131.68,128.69,128.56,128.08,126.46,125.23$, $108.86,103.93,101.66,67.71,62.40,57.08,54.90,44.26,40.92,34.55$, 20.64. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1730,1640 \mathrm{~cm}^{-1}$. CIMS m / z (rel intensity) 462 ($\mathrm{M}^{+}+1,50$), 404 (25), 314 (20), 268 (100). FAB HRMS m/z 462.1543 $(\mathrm{M}+\mathrm{H})^{+}$. Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}_{7}: 462.1553$.
($1 R, 2 R, 3 R, 12 S, 15 R, 16 R$)-1-Acetyloxy-2,3-epoxy-12-(benzyloxycar-bonyl)-9,10-[methylenebis(oxy)]galanthan-7-one (36a). Acetate 35 $(13 \mathrm{mg}, 0.028 \mathrm{mmol})$ was added to a solution of dimethyldioxirane in acetone ($11 \mathrm{~mL}, 0.1 \mathrm{M}$), and the reaction was stirred at $0^{\circ} \mathrm{C}$ for 96 h . The solution was concentrated and passed through a short column of silica gel (EtOAc/hexanes, 1:1). Radial chromatography (ethyl acetate/ hexanes, 1:1) afforded epoxide 36a as a colorless solid ($6.0 \mathrm{mg}, 46 \%$). Recovered acetate 35 was resubjected to epoxidation to provide an additional $2.5 \mathrm{mg}(19 \%)$ of epoxide 36a. Mp $110-112{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.88(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{ddd}, J=8.3,12.7,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.52$ $(\mathrm{dd}, J=5.7,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.26\left(\mathrm{dd}, J=2.2,13 \mathrm{~Hz}, 1 \mathrm{H}, H_{15}\right), 3.40$ (ddd, $J=5.9,12.2,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63\left(\mathrm{~m}, 2 \mathrm{H}, H_{2}, H_{3}\right), 4.13(\mathrm{dd}, J$ $=8,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23\left(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, H_{16}\right), 5.21(\mathrm{~d}, J=12.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=2.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.H_{l}\right), 6.00(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 7.3-7.4(\mathrm{~m}, 5 \mathrm{H}), 7.48$ (s, 1 H). IR (CHCL 3) 1723, $1642 \mathrm{~cm}^{-1} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 172.34$, $170.63,161.87,150.81,146.98,134.97,132.36,128.81,128.77,128.28$, $125.50,108.94,103.25,101.70,67.87,64.68,57.12,54.12,52.60,51.30$, 43.68, 36.62, 31.88, 20.52. CIMS m / z (rel intensity) $478\left(\mathrm{M}^{+}+1\right.$, $0.5), 452(0.5), 266$ (3). FAB HRMS $m / z 478.1491(\mathrm{M}+\mathrm{H})^{+}$. Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}_{8}$: 478.1501 .
$(1 R, 2 R, 3 R, 12 S, 15 R, 16 R)$-1-Acetyloxy-2,3-epoxy-12-hydroxycar-bonyl-9,10-[methylenebis(oxy)]galanthan-7-one (36b). Benzyl ester 36a ($6 \mathrm{mg}, 0.01 \mathrm{mmol}$), absolute EtOH (1 mL), and $10 \% \mathrm{Pd} / \mathrm{C}(2 \mathrm{mg})$ were stirred under 1 atm of H_{2} for 2 h . The mixture was filtered through Celite, the retained solid was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined solvent was evaporated to provide acid $\mathbf{3 6 b}$ as a colorless solid (3.5 $\mathrm{mg}, 90 \%) . \mathrm{Mp} 225{ }^{\circ} \mathrm{C}(\mathrm{dec}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.33$ (m, 1 H$), 2.53(\mathrm{~m}, 1 \mathrm{H}), 3.26\left(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, H_{15}\right), 3.43(\mathrm{~m}, 1$ H), $3.65\left(\mathrm{dd}, J=3.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}, H_{2}\right), 3.72\left(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, H_{3}\right)$, $4.09(\mathrm{~m}, 1 \mathrm{H}), 4.31\left(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}, H_{16}\right), 5.98\left(\mathrm{~m}, 1 \mathrm{H}, H_{l}\right), 6.00$ $(\mathrm{m}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H})$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3500,1727,1640$ cm^{-1}. CIMS m/z (rel intensity) $388\left(\mathrm{M}^{+}+1,2\right), 344$ (65), 284 (25), 266 (65).
($1 R, 2 R, 15 R, 16 R$)-1-Acetyloxy-2-hydroxy-3,12-didehydro-9,10-[methylenebis(oxy)]galanthan-7-one (37). A solution of carboxylic acid $\mathbf{3 6 b}(13 \mathrm{mg}, 0.034 \mathrm{mmol})$, benzene $(10 \mathrm{~mL})$ tert-butyl thiol $(0.2$ $\mathrm{mL})$, and acridine ($12 \mathrm{mg}, 0.068 \mathrm{mmol}$) in a 25 mL Pyrex flask was degassed $\left(\mathrm{N}_{2}\right)$ for 5 min and then irradiated (300 nm) for 105 min . The flask was 6 inches from the light source and the contents were stirred during the irradiation. The benzene was evaporated, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $10 \% \mathrm{HCl}$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Flash chromatography (EtOAc) afforded alcohol $37(6 \mathrm{mg}, 50 \%)$ as a colorless solid; $\mathrm{mp} 236{ }^{\circ} \mathrm{C}(\mathrm{dec})$. The remaining material was judged to be decomposition material by $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR analysis of the crude reaction
mixture. $[\alpha]^{23}{ }_{\mathrm{D}}+130^{\circ}\left(c \quad 0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.03(\mathrm{~s}$, $3 \mathrm{H}), 2.81(\mathrm{~m}, 2 \mathrm{H}), 3.02\left(\mathrm{dd}, J=1,12.4 \mathrm{~Hz}, 1 \mathrm{H}, H_{15}\right), 3.80(\mathrm{~m}, 2$ $\mathrm{H}), 4.19\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, H_{16}\right), 4.31\left(\mathrm{~m}, 1 \mathrm{H}, H_{2}\right), 5.62(\mathrm{~m}, 1 \mathrm{H}$, $\left.H_{l}\right), 5.66\left(\mathrm{~m}, 1 \mathrm{H}, H_{3}\right), 6.01(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 7.55$ (s, 1 H$).{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 170.62,162.72,150.79,147.01,141.99$, $132.38,128.24,118.68,108.94,103.38,101.73,70.66,69.39,55.34$, 43.60, 39.40, 28.52, 20.93. IR $\left(\mathrm{CHCl}_{3}\right) 3590,1730,1643 \mathrm{~cm}^{-1}$. CIMS m / z (rel intensity) $344\left(\mathrm{M}^{+}+1,100\right), 284$ (50), 266 (44). CI HRMS $m / z 344.1128\left(\mathrm{M}^{+}+1\right)$ calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{6}: 344.1134$.
(1R,2R,15R,16R)-1,2-Bis(acetyloxy)-3,12-didehydro-9,10-[meth-ylenebis(0xy)]galanthan-7-one (38). A solution of alcohol 37 (2.0 $\mathrm{mg}, 0.0058 \mathrm{mmol}$), acetic anhydride ($3 \mathrm{mg}, 0.029 \mathrm{mmol}$), triethylamine $(3 \mathrm{mg}, 0.029 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were stirred at room temperature for 3 h . The mixture was washed with $10 \% \mathrm{HCl}$ followed by NaHCO_{3} (saturated). The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated, and flash chromatography afforded diacetate $\mathbf{3 8}(2.2 \mathrm{mg}$, 100%) as a colorless solid. Mp $114^{\circ} \mathrm{C} .[\alpha]^{23}{ }_{\mathrm{D}}-27^{\circ}$ (c 0.22, $\mathrm{CH}_{2^{-}}$ Cl_{2}). Reported: mp $114{ }^{\circ} \mathrm{C} .{ }^{44}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.10$ $(\mathrm{s}, 3 \mathrm{H}), 2.82(\mathrm{~m}, 2 \mathrm{H}), 3.06\left(\mathrm{ddd}, J=12.4,2.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}, H_{15}\right)$, $3.81(\mathrm{~m}, 2 \mathrm{H}), 4.24\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, H_{16}\right), 5.29\left(\mathrm{~m}, 1 \mathrm{H}, H_{2}\right), 5.63$ $\left(\mathrm{m}, 1 \mathrm{H}, H_{3}\right), 5.76\left(\mathrm{~m}, 1 \mathrm{H}, H_{l}\right), 6.02(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~s}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 169.86,169.52,162.60,150.83,147.10$, $143.70,131.88,126.38,115.46,109.04,103.55,101.75,70.22,67.37$, 55.17, 43.54, 40.46, 28.58, 21.01, 20.84. IR $\left(\mathrm{CHCl}_{3}\right) 1735,1643 \mathrm{~cm}^{-1}$. CIMS m/z (rel intensity) 386 ($\mathrm{M}^{+}+1,96$), 326 (32), 266 (100).
(+)-Lycorine (2b) and Its Diacetate. Alcohol $38(5 \mathrm{mg}, 0.01$ $\mathrm{mmol}), \mathrm{LiAlH}_{4}(30 \mathrm{mg}, 0.8 \mathrm{mmol})$, and THF (3 mL) were refluxed 4 h. Dropwise addition of $\mathrm{H}_{2} \mathrm{O}(0.03 \mathrm{~mL}), 15 \% \mathrm{NaOH}(0.03 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(0.09 \mathrm{~mL})$ followed by filtration and concentration afforded (+)lycorine (2b) (3 mg, 70\%). $R_{f} 0.5 \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(2: 2: 1)$. Reported: $R_{f} 0.35 \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(2: 2: 1) .{ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}\right) 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~d}$, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~m}$, $1 \mathrm{H}), 4.79(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{~m}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.96$ $(\mathrm{s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}) .(+)$-Lycorine (2b) in DMSO- d_{6} $(0.5 \mathrm{~mL})$, acetic anhydride $(0.5 \mathrm{~mL}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, and 4-(dimethylamino)pyridine ($2 \mathrm{mg}, 0.02 \mathrm{mmol}$) was stirred at room temperature for $3 \mathrm{~h} . \mathrm{NaHCO}_{3}$ (saturated) was added and stirred for 30 min . The mixture was partitioned and the organic layer was washed with water $(5 \times)$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated, and flash chromatography ($\mathrm{EtOAc} /$ hexane; 1:1 then 1:0) afforded lycorine diacetate ($2 \mathrm{mg}, 54 \%$) as a colorless solid. $[\alpha]_{\mathrm{D}}{ }^{23}-25^{\circ}\left(c 0.16, \mathrm{CHCl}_{3}\right)$, $\mathrm{mp} 207-209^{\circ} \mathrm{C}(\mathrm{dec})$. Reported mp 207-13 ${ }^{\circ} \mathrm{C}$. . $^{4 \mathrm{a}}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.95(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{dd}, J=9,17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~m}$, $2 \mathrm{H}), 2.79\left(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, H_{16}\right), 2.88\left(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, H_{15}\right)$, $3.38(\mathrm{~m}, 1 \mathrm{H}), 3.54\left(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}, H_{7}\right), 4.17(\mathrm{~d}, J=13.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}, H_{7}\right), 5.25\left(\mathrm{~m}, 1 \mathrm{H}, H_{2}\right), 5.53\left(\mathrm{~m}, 1 \mathrm{H}, H_{3}\right), 5.74\left(\mathrm{~m}, 1 \mathrm{H}, H_{l}\right), 5.92$ $(\mathrm{s}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H})$. IR $\left(\mathrm{CHCl}_{3}\right) 1735 \mathrm{~cm}^{-1}$; CIMS m / z (rel intensity) $372\left(\mathrm{M}^{+}+1,18\right), 312$ (52), 252 (100).

Lycorine Diacetate from Natural (-)-Lycorine. (-)-Lycorine (1) $(4 \mathrm{mg}, 0.014 \mathrm{mmol})$ in DMSO $(0.5 \mathrm{~mL})$, acetic anhydride $(0.5 \mathrm{~mL})$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}$), and 4-(dimethylamino)pyridine ($2 \mathrm{mg}, 0.02 \mathrm{mmol}$) was stirred at room temperature for $3 \mathrm{~h} . \mathrm{NaHCO}_{3}$ (saturated) was added and stirred for 30 min . The mixture was partitioned, and the organic layer was washed with water $(5 \times)$. The organic layer was dried ($\mathrm{Na}_{2}-$ SO_{4}) and concentrated, and flash chromatography (EtOAc/hexane; 1:1 then 1:0) afforded lycorine diacetate ($4 \mathrm{mg}, 80 \%$) as a colorless solid. $[\alpha]_{\mathrm{D}}{ }^{23}+25.6^{\circ}\left(c 0.39, \mathrm{CHCl}_{3}\right), \mathrm{mp} 207-209{ }^{\circ} \mathrm{C}$ (dec).

Acknowledgment. This work was supported by the National Institutes of Health (GM 26568). We thank Professor Kurt Torssell for a sample of (\pm)-1-deoxylycorine-7-one, Professor George Pettit for a sample of $(-)$-lycorine together with ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, and Degussa AG for a generous gift of L-proline.

Supporting Information Available: Procedures for preparation of $\mathrm{rac}-9$ and a description of the enantiomer assay for (-)-9 (6 pages). See any current masthead page for ordering and Internet access instructions.

JA9606440

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, June 15, 1996.
 (1) Dalton, D. R. The Alkaloids: The Fundamental Chemistry -- A Biogenetic Approach; Marcel Dekker: New York, 1979.
 (2) Cook, J. W.; Loudon, J. D. In The Alkaloids; Manske, R. H. F., Holmes, H. L., Eds; Academic Press: New York, 1952; Vol. 2, p 331.
 (3) (a) Mineshita, T.; Yayaguchi, K.; Takeda, K.; Kotera, K. Ann. Rep. Shinogi Res. Lab. 1956, 6, 119. (b) Chattopadhyay, U.; Chaudhuri, L.; Das, S.; Kumar, Y.; Ghosal, S. Pharmazie 1984, 39, 855.
 (4) Leo De, P.; Dalessandro, G.; De Santis, A.; Arigoni, O. Plant Cell Physiol. 1973, 14, 487.
 (5) For a review of the chemistry and biological effects of lycorine and related Amaryllidaceae alkaloids, see: Ghosal, S.; Saini, K. S.; Razdan, S. Phytochem. 1985, 24, 2141.
 (6) Kondo, H.; Uyeo, S. Chem. Ber. 1935, 68, 1756.
 (7) Shiro, M.; Sato, T.; Koyama, H. Chem. Ind. 1966, 1229.
 (8) For recent reviews of the Amaryllidaceae alkaloids, see: (a) Martin, S. M. In The Alkaloids; Brossi, A., Ed.; Academic Press: New York, 1987; Vol. 30, p 251. (b) Lewis, J. R. Nat. Prod. Rep. 1995, 12, 339.

[^1]: (10) For prior consideration of the development of the C ring of lycorine by way of a Birch reduction, see: (a) Hendrickson, J. B.; Alder, R. W.; Dalton, D. R.; Hey, D. G. J. Org. Chem. 1969, 34, 2667. (b) Schultz, A. G Acc. Chem. Res. 1990, 23, 207.
 (11) Schultz, A. G.; Taveras, A. G.; Harrington, R. E. Tetrahedron Lett. 1988, 29, 3907.
 (12) (a) Schultz, A. G.; Macielag, M.; Sundararaman, P.; Taveras, A. G.; Welch, M. J. Am. Chem. Soc. 1988, 110, 7828. (b) Benzamide 3 is prepared by procedures described in ref 12a or may be purchased from Aldrich Chemical Co. (34,836-8).

[^2]: (13) For the genesis of this procedure, see ref 12a.
 (14) (a) Cohen, T.; McMullen, C. H.; Smith, K. J. Am. Chem. Soc. 1968, 90, 6866. (b) Snieckus, V.; Cuevas, J.-C.; Sloan, C. P.; Liu, H.; Curran, D. P. J. Am. Chem. Soc. 1990, 112, 896.
 (15) Rigby, J. H.; Qabar, M. J. Am. Chem. Soc. 1991, 113, 8975.
 (16) Molecular modeling studies were carried out with MacroModel (MM2, Version 3.0).

[^3]: (21) For an alternative mechanism involving intermolecular hydrogen atom migration, see (a) Schultz, A. G.; Lucci, R. D. J. Chem. Soc., Chem. Commun. 1976, 925. (b) Schultz, A. G.; Lucci, R. D.; Fu, W. Y.; Berger, M. H.; Erhardt, J.; Hagmann, W. K. J. Am. Chem. Soc. 1978, 100, 2150.
 (22) (a) Okada, K.; Okubo, K.; Oda, M. J. Photochem. Photobiol. A: Chem. 1991, 57, 265. (b) Okada, K.; Okubo, K.; Oda, M. Tetrahedron Lett. 1989, 30, 6733.

[^4]: (23) (a) Barton, D. H. R.; Crich, D.; Motherwell, W. B. Tetrahedron 1985, 41, 3901. (b) Barton, D. H. R.; Crich, D.; Kretzschmar, G. J. Chem. Soc., Perkin Trans. 1 1986, 39.
 (24) Hassner, A.; Alexanian, V. Tetrahedron Lett. 1978, 4475.
 (25) For earlier examples of radical-induced epoxide fragmentations, see: (a) Sabatino, E. C.; Gritter, R. J. J. Org. Chem. 1963, 28, 3437. (b) Barton, D. H. R.; Motherwell, R. S. H.; Motherwell, W. B. J. Chem. Soc., Perkin Trans. 1 1981, 2363. (c) Rawal, V. H.; Newton, R. C.; Krishnamurthy, V. J. Org. Chem. 1990, 55, 5181. (d) Kim, S.; Lee, S.; Koh, J. S. J. Am. Chem. Soc. 1991, 113, 5106. (e) Rawal, V. H.; Krishnamurthy, V. Tetrahedron Lett. 1992, 33, 3439. (f) Rawal, V. H.; Iwasa, S. Tetrahedron Lett. 1992, 33, 4687. (g) Dang, H.-S.; Roberts, B. P. Tetrahedron Lett. 1992, 33, 6169.
 (26) For a nonstereoselective synthesis of racemic 22, see: Torssell, K. Tetrahedron Lett. 1974, 623.
 (27) Moller, O.; Steinberg, E.-M.; Torssell, K. Acta Chem. Scand. B 1978, 32, 98.
 (28) Salmond, W. G.; Barta, M. A.; Havens, J. L. J. Org. Chem. 1978, 43, 2057.
 (29) Kotera, K. Tetrahedron 1961, 12, 240.
 (30) Muxfeldt, H.; Bell, J. P.; Baker, J. A.; Cuntze, U. Tetrahedron Lett. 1973, 4587.
 (31) Weller, T.; Seebach, D. Tetrahedron Lett. 1982, 23, 935.
 (32) Baker, J. A. Ph.D. Thesis, Cornell University, 1970.

[^5]: (33) Holoboski, M. A. Ph.D. Thesis, Rensselaer Polytechnic Institute, 1995.
 (34) Emde, H.; Domsch, D.; Feger, H.; Frick, U.; Gotz, A.; Hergott, H. H.; Hofmann, K.; Kober, W.; Krageloh, K.; Oesterle, T.; Steppan, W.; West, W.; Simchen, G. Synthesis 1982, 1.
 (35) Unexpected problems associated with the oxidation of $\mathbf{2 2}$ with MnO_{2} to the corresponding enone made the study of dienol silyl ether formation impractical; see ref 33 .
 (36) Sharpless, K. B.; Lauer, R. F. J. Am. Chem. Soc. 1973, 95, 2697.

[^6]: (37) For a discussion of this type of oxidation, see: Hori, T.; Sharpless, K. B. J. Org. Chem. 1978, 43, 1689.
 (38) Henbest, H. B.; Wilson, R. A. L. J. Chem. Soc. 1959, 1958.
 (39) McKittrick, B. A.; Ganem, B. Tetrahedron Lett. 1985, 26, 4895.
 (40) Cooper, M. S.; Heaney, H.; Newbold, A. J.; Sanderson, W. R. Synlett. 1990, 533.
 (41) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307.

[^7]: (42) Stork, G.; White, W. N. J. Am. Chem. Soc. 1956, 78, 4609.
 (43) (a) Adam, W.; Chan, Y.; Cremer, D.; Gauss, J.; Scheutzow, D.; Schindler, M. J. Org. Chem. 1987, 52, 2800. (b) Adam, W.; Curci, R.; Edwards, J. O. Acc. Chem. Res. 1989, 22, 205. (c) Murray, R. W. Chem. Rev. 1989, 89, 1187.
 (44) (a) Tsuda, Y.; Sano, T.; Taga, J.; Isobe, K.; Toda, J.; Takagi, S.; Yamaki, M.; Murata, M.; Irie, H.; Tanaka, H. J. Chem. Soc., Perkin Trans. 1 1979, 1358. (b) Kotera, K.; Hamada, K.; Tori, Y.; Aono, K.; Kuriyama, K. Tetrahedron Lett. 1966, 2009.

[^8]: (45) Auerbach, J.; Weissman, S. A.; Blacklock, T. J.; Angeles, M. R.; Hoogsteen, K. Tetrahedron Lett. 1993, 34, 931.
 (46) Semmelhack, M. F.; Chong, B. P.; Stauffer, R. D.; Rogerson, T. D.; Chong, A.; Jones, L. D. J. Am. Chem. Soc. 1975, 97, 2507.
 (47) CA 55:3594c.

